Molecular Modeling and Multiscaling Issues for Electronic Material Applications

Author:   Nancy Iwamoto ,  Matthew M.F. Yuen ,  Haibo Fan
Publisher:   Springer-Verlag New York Inc.
Edition:   2012 ed.
ISBN:  

9781489988379


Pages:   260
Publication Date:   03 March 2014
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $290.37 Quantity:  
Add to Cart

Share |

Molecular Modeling and Multiscaling Issues for Electronic Material Applications


Add your own review!

Overview

Full Product Details

Author:   Nancy Iwamoto ,  Matthew M.F. Yuen ,  Haibo Fan
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   2012 ed.
Dimensions:   Width: 15.50cm , Height: 1.40cm , Length: 23.50cm
Weight:   0.454kg
ISBN:  

9781489988379


ISBN 10:   1489988378
Pages:   260
Publication Date:   03 March 2014
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Part I Quantum Mechanics and Molecular Methods: Uses for Property Understanding.- Atomistic Simulations of Microelectronic Materials: Prediction of Mechanical, Thermal and Electrical Properties.- Using Molecular Modeling Trending to Understand Dielectric Susceptibility.- Understanding Cleaner Efficiency for BARC (“Bottom Anti-Reflective Coating”) After Plasma Etch in Dual Damascene Structures Through the Practical Use of Molecular Modeling Trends.- Part II. Large scale atomistic methods and scaling methods to understand mechanical failure in metals.- Roles of grain boundaries in the strength of metals by using atomic simulations.- Semi Emprical  Low Cycle Fatigue Crack Growth Analysis of Nanostructure Chip-To-Package Copper Interconnect Using Molecular Simulation.- Part III. Molecular scale modeling uses for Carbon Nanotube behavior.- Thermal conductivity of carbon nanotube under external mechanical stresses and moisture by molecular dynamics simulation.- Influence of Structural Parameters of Carbon Nanotubes on Their Thermal Conductivity – Numerical Assessment.- Part IV.Molecular methods to understand mechanical and physical properties.- The mechanical properties modeling of nano-scale materials by molecular dynamics.- Molecular design of SAM (Self-Assembled Monolayer) coupling agent for reliable interfaces by Molecular Dynamics Simulation.- Microelectronics Packaging Materials:Correlating Structure and Property using Molecular Dynamics Simulations.- PartV. Multiscale methods and perspectives.- Investigation of interfacial delamination in electronic packages.- Multiscale approach optimization on surface wettabilty change.- Glass Transition Analysis of Crosslinked Polymers –Numerical and Mesoscale Approach.- Mechanical Properties of an Epoxy, ModeledUsing Particle Dynamics as Parameterized through Molecular Modeling.  

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List