|
![]() |
|||
|
||||
OverviewThis textbook presents a concise comparison of catalytic and biocatalytic systems outlining their catalytic properties and peculiarities. Moreover, it presents a brief introduction to the science of catalysis and attempts to unify different catalytic systems into a single, conceptually coherent structure. In fact, molecular dynamics and complexity may occur in both catalysts and biocatalysts, with many similarities in both their structural configuration and operational mechanisms. Moreover, the interactions between the different components of the catalytic system that are important in defining the overall activity, including the nature of active sites are discussed. Each chapter includes end of chapter questions supported by an online instructor solution manual. This textbook will be useful for undergraduate and graduate chemistry and biochemistry students. Full Product DetailsAuthor: Marco Piumetti , Andrés Illanes , Nik LygerosPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2022 Weight: 0.261kg ISBN: 9783030885021ISBN 10: 303088502 Pages: 144 Publication Date: 19 December 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsPreface Chapter I - The structure of proteins 1.1 Introduction 1.2 The primary structure 1.3 The secondary structure 1.4 The tertiary structure 1.5 The quaternary structure 1.6 Driving forces in protein folding 1.7 Structural flexibility in proteins 1.8 Thermodynamics of protein-ligand complexes 1.9 Characterization of protein structures 1.10 Summary References Chapter II - Enzymes and their function (with Andrés Illanes) 2.1 Introduction 2.2 The structure of enzymes 2.3 The enzymatic process 2.4 Enzyme kinetics 2.4.1 Single-substrate reactions 2.4.1.1 Michaelis-Menten kinetics 2.4.2 Multi-substrate reactions 2.4.3 Non-Micheaelis-Menten kinetics 2.5 Factors influencing enzyme activity 2.5.1 Environmental conditions: Temperature and pH 2.5.2 Activators and inhibitors 2.5.2.1 Reversible inhibition 2.5.2.2 Irreversible inhibition 2.5.2.3 Allosteric activation and inhibition 2.5.2.4 Biogenic regulation 2.6 Summary References Chapter III - Introduction to molecular catalysis (with Andrés Illanes) 3.1 The science of catalysis 3.1.1 Homogeneous, heterogeneous and enzymatic catalysis 3.1.2 Catalytic activity, selectivity and yield 3.2 Kinetics of catalytic reactions 3.2.1 Reaction rates 3.2.2 Transition state theory 3.2.3 The Arrhenius equation 3.3 Fundamental concepts in heterogeneous catalysis 3.3.1 Steps in heterogeneous catalysis 3.3.2 The Sabatier principle 3.3.3 The Bell-Evans-Polanyi principle 3.3.4 Chemisorption and physisorption 3.3.5 Langmuir-Hinshelwood versus Eley-Rideal mechanism 3.3.6 Mars and van Krevelen mechanism 3.4 Summary References Chapter IV – The complex nature of active sites 4.1 Dynamic behavior of active sites 4.2 Active sites in heterogeneous catalysis: Historical background 4.2.1 Single-site heterogeneous catalysts 4.2.2 Small metal particles 4.2.3 Zeolites 4.2.4 Oxide catalysts 4.3 Active sites in enzymatic catalysis 4.3.1 Allosterically regulated enzymes: the case of ATCase 4.3.2 Active sites and electric fields 4.4 Active sites in homogeneous catalysis 4.4.1 Catalytic cycles and flexibility 4.5 Summary References Chapter V – Complexity in catalysis (with Nik Lygeros) 5.1 Self-organizing systems 5.2 Complexity of catalytic processes 5.2.1 Thermodynamic considerations 5.2.2 Topological aspects and real surfaces 5.3 Well and ill-conditioned systems 5.4 Cooperations and synergies 5.5 New modelling approaches for decoding complexity in catalysis 5.5.1 The theory of hyperstructures 5.5.1.1 Cooperation and synergistic hyperstructures 5.5.1.2 Strategic relevance 5.5.2 Application of the game theory to catalytic systems 5.6 Artificial intelligence faces catalytic complexity 5.7 Summary ReferencesReviewsAuthor InformationMarco Piumetti received his European PhD in Materials Science and Technology at the Politecnico di Torino in 2010. He trained at several academic institutions, including the Laboratoire de réactivité de surface-Sorbonne Université and Fritz-Haber Institute. He is an appointed professor teaching the courses Industrial Biochemistry and Introduction to Sustainable Engineering offered at the Politecnico di Torino. His research activities are currently conducted with the Catalytic Reaction Engineering for Sustainable Engineering (CREST) group of the Department of Applied Science and Technology (DISAT) at the Politecnico di Torino and concern the fields of catalysis, surface science, nanomaterials, biocatalysis and biotech applications. Tab Content 6Author Website:Countries AvailableAll regions |