Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics

Author:   Hajime Asahi ,  Yoshiji Horikoshi
Publisher:   John Wiley and Sons Ltd
ISBN:  

9781119355014


Pages:   512
Publication Date:   12 April 2019
Format:   Hardback
Availability:   To order   Availability explained
Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us.

Our Price $358.95 Quantity:  
Add to Cart

Share |

Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics


Add your own review!

Overview

Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III-V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.

Full Product Details

Author:   Hajime Asahi ,  Yoshiji Horikoshi
Publisher:   John Wiley and Sons Ltd
Imprint:   Wiley-Blackwell
Dimensions:   Width: 17.20cm , Height: 2.90cm , Length: 24.90cm
Weight:   1.128kg
ISBN:  

9781119355014


ISBN 10:   111935501
Pages:   512
Publication Date:   12 April 2019
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   To order   Availability explained
Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us.

Table of Contents

List of Contributors xv Series Preface xix Preface xxi Part I Fundamentals of MBE 1 1. History of MBE 3 Tom Foxon 1.1 Introduction 3 1.2 The MBE Process 4 1.3 Controlled n and p Doping 10 1.4 Modified Growth Procedures 10 1.5 Gas-Source MBE 11 1.6 Low-Dimensional Structures 11 1.7 III-V Nitrides, Phosphides, Antimonides and Bismides and Other Materials 13 1.8 Early MBE-Grown Devices 18 1.9 Summary 18 Acknowledgments 18 References 19 2. General Description of MBE 23 Yoshiji Horikoshi 2.1 Introduction 23 2.2 High-Vacuum Chamber System 24 2.3 Atomic and Molecular Beam Sources 25 2.4 Measurement of MBE Growth Parameters 28 2.5 Surface Characterization Tools for MBE Growth 31 2.6 Summary 37 Acknowledgments 37 References 38 3. Migration-Enhanced Epitaxy and its Application 41 Yoshiji Horikoshi 3.1 Introduction 41 3.2 Toward Atomically Flat Surfaces in MBE 42 3.3 Principle of MEE 44 3.4 Growth of GaAs by MEE 48 3.5 Incommensurate Deposition and Migration of Ga Atoms 49 3.6 Application of MEE Deposition Sequence to Surface Research 50 3.7 Application of MEE to Selective Area Epitaxy 51 3.8 Summary 54 Acknowledgments 54 References 55 4. Nanostructure Formation Process of MBE 57 Koichi Yamaguchi 4.1 Introduction 57 4.2 Growth of Quantum Wells 58 4.3 Growth of Quantum Wires and Nanowires 60 4.4 Growth of Quantum Dots 64 4.5 Conclusion 71 References 72 5. Ammonia Molecular Beam Epitaxy of III-Nitrides 73 Micha N. Fireman and James S. Speck 5.1 Introduction 73 5.2 III-Nitride Fundamentals 74 5.3 Ammonia Molecular Beam Epitaxy 77 5.4 Ternary Nitride Alloys and Doping 82 5.5 Conclusions 86 References 86 Contents vii 6. Mechanism of Selective Area Growth by MBE 91 Katsumi Kishino 6.1 Background 91 6.2 Growth Parameters for Ti Mask SAG 92 6.3 Initial Growth of Nanocolumns 94 6.4 Nitrogen Flow Rate Dependence of SAG 95 6.5 Diffusion Length of Ga Adatoms 96 6.6 Fine Control of Nanocolumn Arrays by SAG 98 6.7 Controlled Columnar Crystals from Micrometer to Nanometer Size 100 6.8 Nanotemplate SAG of AlGaN Nanocolumns 101 6.9 Conclusions and Outlook 103 References 104 Part II MBE Technology for Electronic Devices Application 107 7. MBE of III-Nitride Semiconductors for Electronic Devices 109 Rolf J. Aidam, O. Ambacher, E. Diwo, B.-J. Godejohann, L. Kirste, T. Lim, R. Quay, and P. Waltereit 7.1 Introduction 109 7.2 MBE Growth Techniques 110 7.3 AlGaN/GaN High Electron Mobility Transistors on SiC Substrate 118 7.4 AlGaN/GaN High Electron Mobility Transistors on Si Substrate 123 7.5 HEMTs with Thin Barrier Layers for High-Frequency Applications 125 7.6 Vertical Devices 130 References 132 8. Molecular Beam Epitaxy for Steep Switching Tunnel FETs 135 Salim El Kazzi 8.1 Introduction 135 8.2 TFET Working Principle 136 8.3 III-V Heterostructure for TFETs 136 8.4 MBE for Beyond CMOS Technologies 138 8.5 Doping 139 8.6 Tunneling Interface Engineering 142 8.7 MBE for III-V TFET Integration 143 8.8 Conclusions and Perspectives 146 Acknowledgments 146 References 147 Part III MBE for Optoelectronic Devices 149 9. Applications of III-V Semiconductor Quantum Dots in Optoelectronic Devices 151 Kouichi Akahane and Yoshiaki Nakata 9.1 Introduction: Self-assembled Quantum Dots 151 9.2 Lasers Based on InAs Quantum Dots Grown on GaAs Substrates 152 9.3 InAs QD Optical Device Operating at Telecom Band (1.55 m) 158 9.4 Recent Progress in QD Lasers 164 9.5 Summary 165 References 165 10. Applications of III-V Semiconductors for Mid-infrared Lasers 169 Yuichi Kawamura 10.1 Introduction 169 10.2 GaSb-Based Lasers 170 10.3 InP-Based Lasers 170 10.4 InAs-Based Lasers 173 10.5 Conclusion 174 References 174 11. Molecular Beam Epitaxial Growth of Terahertz Quantum Cascade Lasers 175 Harvey E. Beere and David A. Ritchie 11.1 Introduction 175 11.2 Epitaxial Challenges 179 References 189 12. MBE of III-Nitride Heterostructures for Optoelectronic Devices 191 C. Skierbiszewski, G. Muziol, H. Turski, M. Siekacz, K. Nowakowski-Szkudlarek, A. Feduniewicz- ? Zmuda, P. Wolny, and M. Sawicka 12.1 Introduction 191 12.2 Low-Temperature Growth of Nitrides by PAMBE 192 12.4 New Concepts of LDs with Tunnel Junctions 205 12.5 Summary 206 Acknowledgments 207 References 207 13. III-Nitride Quantum Dots for Optoelectronic Devices 211 Pallab Bhattacharya, Thomas Frost, Shafat Jahangir, Saniya Deshpande, and Arnab Hazari 13.1 Introduction 211 13.2 Molecular Beam Epitaxy of InGaN/GaN Self-organized Quantum Dots 212 13.3 Quantum Dot Wavelength Converter White Light-Emitting Diode 220 13.4 Quantum Dot Lasers 223 13.5 Summary and Future Prospects 229 References 230 14. Molecular-Beam Epitaxy of Antimonides for Optoelectronic Devices 233 Eric Tournie 14.1 Introduction 233 14.2 Epitaxy of Antimonides: A Brief Historical Survey 235 14.3 Molecular-Beam Epitaxy of Antimonide 236 14.4 Outlook 243 Acknowledgments 244 References 244 15. III-V Semiconductors for Infrared Detectors 247 P. C. Klipstein 15.1 Introduction 247 15.2 InAsSb XBn Detectors 251 15.3 T2SL XBp Detectors 255 15.4 Conclusion 262 Acknowledgments 262 References 262 16. MBE of III-V Semiconductors for Solar Cells 265 Takeyoshi Sugaya 16.1 Introduction 265 16.2 InGaP Solar Cells 266 16.3 InGaAsP Solar Cells Lattice-Matched to GaAs 268 16.4 InGaAsP Solar Cells Lattice-Matched to InP 271 16.5 Growth of Tunnel Junctions for Multi-Junction Solar Cells 272 16.6 Summary 277 References 277 Part IV Magnetic Semiconductors and Spintronics Devices 279 17. III-V-Based Magnetic Semiconductors and Spintronics Devices 281 Hiro Munekata 17.1 Introduction 281 17.2 Hole-Mediated Ferromagnetism 282 17.3 Molecular Beam Epitaxy and Materials Characterization 285 17.4 Studies in View of Spintronics Applications 293 17.5 Conclusions and Prospects 296 Acknowledgments 296 References 296 18. III-Nitride Dilute Magnetic Semiconductors 299 Yi-Kai Zhou and Hajime Asahi 18.1 Introduction 299 18.2 Transition-Metal-Doped GaN 300 18.3 Rare-Earth-Doped III-Nitrides 303 18.4 Device Applications 309 18.5 Summary 312 References 312 19. MBE Growth, Magnetic and Magneto-optical Properties of II-VI DMSs 315 Shinji Kuroda 19.1 II-VI DMSs Doped with Mn 315 19.2 II-VI DMSs Doped with Cr and Fe 319 19.3 ZnO-Based DMSs 323 References 325 20. Ferromagnet/Semiconductor Heterostructures and Nanostructures Grown by Molecular Beam Epitaxy 329 Masaaki Tanaka 20.1 Introduction 329 20.2 MnAs on GaAs(001) and Si(001) Substrates 330 20.3 GaAs:MnAs Granular Materials: Magnetoresistive Effects and Related Devices 337 20.4 Summary 345 Acknowledgments 345 References 346 21. MBE Growth of Ge-Based Diluted Magnetic Semiconductors 349 Tianxiao Nie, Jianshi Tang, and Kang L. Wang 21.1 Introduction 349 21.2 MBE Growth of MnxGe1 x Thin Film and Nanostructures 351 21.3 Magnetic Properties of MnxGe1 x Thin Films and Nanostructures 355 21.4 Electric-Field-Controlled Ferromagnetism and Magnetoresistance 359 21.5 Conclusion 362 Acknowledgments 362 References 363 Part V Challenge of MBE to New Materials and New Researches 365 22. Molecular Beam Epitaxial Growth of Topological Insulators 367 Xiao Feng, Ke He, Xucun Ma, and Qi-Kun Xue 22.1 Introduction 367 22.2 MBE Growth of Bi2Se3 Family Three-Dimensional Topological Insulators 368 22.3 Defects in MBE-Grown Bi2Se3 Family TI Films 371 22.4 Band Structure Engineering in Ternary Bi2Se3 Family TIs 373 22.5 Magnetically Doped Bi2Se3 Family TIs 373 22.6 MBE Growth of 2D TI Materials 375 22.7 Summary 377 References 377 23. Applications of Bismuth-Containing III-V Semiconductors in Devices 381 Masahiro Yoshimoto 23.1 Introduction 381 23.2 Growth of GaAsBi 382 23.3 Properties of GaAsBi 384 23.4 Applications of GaAsBi 385 23.5 Applications of Other Bi-Containing Semiconductors 390 23.6 Summary 391 References 392 24. MBE Growth of Graphene 395 J. Marcelo J. Lopes 24.1 Introduction 395 24.2 MBE of Graphene on Metals 398 24.3 MBE of Graphene on Semiconductors 399 24.4 MBE of Graphene on Oxides and Other Dielectrics 403 24.5 Conclusions 407 Acknowledgments 408 References 408 25. MBE Growth and Device Applications of Ga2O3 411 Masataka Higashiwaki 25.1 Introduction 411 25.2 Physical Properties of Ga2O3 411 25.3 Ga2O3 Electronic Device Applications 414 25.4 Melt-Grown Bulk Single Crystals 414 25.5 Ga2O3 MBE Growth 414 25.6 Transistor Applications 419 25.7 Summary 421 References 421 26. Molecular Beam Epitaxy for Oxide Electronics 423 Abhinav Prakash and Bharat Jalan 26.1 Introduction 423 26.2 Structure-Property Relationship in Perovskite Oxides 423 26.3 Oxide Molecular Beam Epitaxy 430 26.4 Recent Developments in Oxide MBE 435 26.5 Outlook 443 26.6 Summary 447 Acknowledgments 447 References 447 27. In-situ STM Study of MBE Growth Process 453 Shiro Tsukamoto 27.1 Introduction 453 27.2 The Advantages of In-situ STM Observation for Understanding Growth Mechanisms 454 27.3 In-situ STM Observation of InAs Growth on GaAs(001) by STMBE System 454 27.4 In-situ STM Observation of Various Growths and Treatments on GaAs Surfaces by STMBE System 456 27.5 Conclusion 460 References 460 28. Heterovalent Semiconductor Structures and their Device Applications 463 Yong-Hang Zhang 28.1 Introduction 463 28.2 MBE Growth of Heterovalent Structures 465 28.3 ZnTe and GaSb/ZnTe Heterovalent Distributed Bragg Reflector Structures Grown on GaSb 466 28.4 CdTe/MgCdTe Structure and Heterovalent Devices Grown on InSb Substrates 468 28.5 Single-Crystal CdTe/MgxCd1 xTe Solar Cells 474 28.6 CdTe/InSb Two-Color Photodetectors 477 Acknowledgments 479 References 480 Index i1

Reviews

Author Information

Series Editors Arthur Willoughby University of Southampton, Southampton, UK Peter Capper formerly of SELEX Galileo Infrared Ltd, Southampton, UK Safa Kasap University of Saskatchewan, Saskatoon, Canada Edited by Hajime Asahi Emeritus Professor, Osaka University, Japan Yoshiji Horikoshi Emeritus Professor, Waseda University, Tokyo, Japan

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Mother's Day Reading Guide

 

Flowers in a vase on top of a stack of books on a catalogue cover

Shopping Cart
Your cart is empty
Shopping cart
Mailing List