|
|
|||
|
||||
Overview""Modern Data Mining with Python"" is a guidebook for responsibly implementing data mining techniques that involve collecting, storing, and analyzing large amounts of structured and unstructured data to extract useful insights and patterns. Enter into the world of data mining and machine learning. Use insights from various data sources, from social media to credit card transactions. Master statistical tools, explore data trends, and patterns. Understand decision trees and artificial neural networks (ANNs). Manage high-dimensional data with dimensionality reduction. Explore binary classification with logistic regression. Spot concealed patterns with unsupervised learning. Analyze text with recurrent neural networks (RNNs) and visuals with convolutional neural networks (CNNs). Ensure model compliance with regulatory standards. Full Product DetailsAuthor: Dushyant Singh Sengar , Vikash ChandraPublisher: BPB Publications Imprint: BPB Publications Dimensions: Width: 23.50cm , Height: 2.50cm , Length: 19.10cm ISBN: 9789355519146ISBN 10: 9355519141 Pages: 438 Publication Date: 26 February 2024 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationDushyant Singh Sengar is a passionate leader in AI and Risk management with experience building high-performing teams and leading organizations to become data-driven. His extensive 18 years of experience on both sides of the Atlantic spans various roles, including model development, risk assessment, and driving AI product development initiatives. Vikash Chandra is a data scientist and software developer having industry experience in executing and implementing projects in the area of predictive analytics and machine learning across multiple business domains. He has experience in handling and modifying large quantities of both structured and unstructured data leveraging SAS, R, Python, and other big data technologies. Tab Content 6Author Website:Countries AvailableAll regions |
||||