|
![]() |
|||
|
||||
OverviewThe Short QT Syndrome (SQTS) is characterized by abbreviated QT intervals on the electrocardiogram, increased risk of cardiac arrhythmias and sudden death. Although several gene mutations have been identified in SQT patients, the role of these mutations in promoting arrhythmogenesis is still not completely understood. Consequently, this thesis employs multidisciplinary approaches to develop a 3D virtual heart, which is then used to elucidate how the short QT syndrome facilitates and maintains ventricular arrhythmias and to determine its effects on ventricular mechanical contraction. The findings in this thesis provide a comprehensive and mechanistic explanation for a number of gene mutations associated with potassium channels in terms of susceptibility to arrhythmia. The multiphysics models developed provide a powerful platform for identifying the root causes of various arrhythmias and investigating therapeutic interventions for these diseases. The thesis was examined by Prof. Chris Huang of the University of Cambridge, the most authoritative figure in cardiac electrophysiology, who has described the work as “outstanding.” Full Product DetailsAuthor: Ismail AdeniranPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: 2014 ed. Dimensions: Width: 15.50cm , Height: 1.40cm , Length: 23.50cm Weight: 4.794kg ISBN: 9783319071992ISBN 10: 3319071998 Pages: 217 Publication Date: 01 July 2014 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIon Channels and the Action Potential.- Potassium Channels Implicated in the Short QT Syndrome.- The Short QT Syndrome.- Model Development.- Methods, Experimental Protocols and Mathematical Preliminaries.- Increased Vulnerability of the Human Ventricle to Re-entrant Excitation in HERG-linked SQT1.- Mathematically Modelling the Functional Consequences of the SQT2 Mutation.- Proarrhythmia in KCNJ2-linked Short QT Syndrome: Insights from Modelling.- Relationship between Electrical and Mechanical Systole in the Short QT Syndrome: Insights from Modelling.- Discussion and Conclusion.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |