|
![]() |
|||
|
||||
OverviewModelling and Mechanics of Carbon-based Nanostructured Materials sets out the principles of applied mathematical modeling in the topical area of nanotechnology. It is purposely designed to be self-contained, giving readers all the necessary modeling principles required for working with nanostructures. The unique physical properties observed at the nanoscale are often counterintuitive, sometimes astounding researchers and thus driving numerous investigations into their special properties and potential applications. Typically, existing research has been conducted through experimental studies and molecular dynamics simulations. This book goes beyond that to provide new avenues for study and review. Full Product DetailsAuthor: Duangkamon Baowan (Associate Professor of Applied Mathematics, Mahilodi University, Thailand) , Barry J Cox (Senior Lecturer in Applied Mathematics, University of Adelaide, Australia) , Tamsyn A Hilder (Lecturer in Computational Chemistry, Victoria University of Wellington, New Zealand) , James M Hill (Professor of Theoretical Mechanics and Group Director of the Nanomechanics Group, University of Adelaide, Australia)Publisher: William Andrew Publishing Imprint: William Andrew Publishing Dimensions: Width: 19.10cm , Height: 2.00cm , Length: 23.50cm Weight: 0.790kg ISBN: 9780128124635ISBN 10: 0128124636 Pages: 386 Publication Date: 18 January 2017 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationDuangkamon Baowan is Associate Professor of Applied Mathematics at Mahilodi University, Thailand, having previously worked at the University of Wollongong, Australia. Her research is focused on the mechanics of nanoscaled materials Barry J. Cox is Senior Lecturer in Applied Mathematics at the University of Adelaide, Australia. His research interests include nanoscaled oscillating systems, modelling nanoscale devices using continuum mechanics and predicting properties of nanomaterials using analytical techniques. He is a member of several professional bodies, including the Australian Nanotechnology Network. Tamsyn Hilder is a Lecturer in Computational Chemistry at Victoria University of Wellington, New Zealand. Her research focuses on computational biophysics of membrane proteins and nanomaterials, and the interaction between nano and biological materials. James M. Hill is Professor of Theoretical Mechanics and Group Director of the Nanomechanics Group at the University of Adelaide, Australia. He has previously written five books and published over 300 research publications in peer-reviewed journals. Ngamta Thamwattana is Associate Professor at the School of Mathematics and Applied Statistics at the University of Wollongong, Australia. Her research focuses on mathematical modelling in nanotechnology. Tab Content 6Author Website:Countries AvailableAll regions |