Modeling Sensorineural Hearing Loss

Author:   Walt Jesteadt
Publisher:   Taylor & Francis Ltd
ISBN:  

9781138876606


Pages:   514
Publication Date:   21 January 2019
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $105.00 Quantity:  
Add to Cart

Share |

Modeling Sensorineural Hearing Loss


Add your own review!

Overview

Full Product Details

Author:   Walt Jesteadt
Publisher:   Taylor & Francis Ltd
Imprint:   Routledge
Weight:   0.453kg
ISBN:  

9781138876606


ISBN 10:   1138876607
Pages:   514
Publication Date:   21 January 2019
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

"Contents: Preface. W. Jesteadt, Introduction: Modeling Sensorineural Hearing Loss. Part I: Physiological and Perceptual Models of Sensorineural Hearing Loss.S.T. Neely, Introduction. E. Javel, Cochlear Excitation Patterns in Sensorineural Hearing Loss. R.L. Miller, J.R. Schilling, K.R. Franck, E.D. Young, Representation of the Vowel /eh/ in the Auditory Nerve of Cats With a Noise-Induced Hearing Loss. R.L. Jenison, A Computational Model of Reorganization in Auditory Cortex in Response to Cochlear Lesions. T. Lin, J.L. Goldstein, Implementation of the MBPNL Cochlear I/O Model Using the C Programming Language, and Its Application to Modeling Nonlinear Level Dependence of Auditory Function. J.M. Kates, Using a Cochlear Model to Develop Adaptive Hearing-Aid Processing. Part II: Simulation and Compensation for Reduced Dynamic Range.L.E. Humes, Introduction. J.B. Allen, Derecruitment by Multi-Band Compression in Hearing Aids. D.S. Lum, L.D. Braida, A Psychoacoustic Comparison of Simulations of Sensorineural Hearing Loss Based on Dynamic Expansion and Additive Noise. S.V. De Gennaro, L.D. Braida, Lippmann et al. Revisited: A Study of Multiband Amplitude Compression for Listeners With Hearing Loss Simulated by Masking Noise. E.W. Yund, T.R. Crain, Voiced Stop Consonant Discrimination With Multichannel Expansion Hearing Loss Simulations. Part III: Loudness Growth and Intensity Discrimination as Measures of Nonlinearity.L.D. Braida, Introduction. S. Launer, V. Hohmann, B. Kollmeier, Modeling Loudness Growth and Loudness Summation in Hearing-Impaired Listeners. M. Florentine, S. Buus, R.P. Hellman, A Model of Loudness Summation Applied to High-Frequency Hearing Loss. R.P. Hellman, Growth of Loudness in Sensorineural Impairment: Experimental Results and Modeling Implications. S.T. Neely, J.B. Allen, Relationship Between the Rate of Growth of Loudness and the Intensity DL. W.S. Hellman, On the Role and Structure of the Decision Variable Variance Function in Modeling Intensity Discrimination in Normal Hearing and in Simulated Hearing Loss. R.A. Lutfi, K.A. Doherty, Modeling Level Discrimination of Broadband Signals by Listeners With Sensorineural Hearing Loss. Part IV: Additivity of Masking as a Measure of Nonlinearity.M.R. Leek, Introduction. J.R. Dubno, J.B. Ahlstrom, Additivity of Multiple Maskers of Speech. A.J. Oxenham, B.C.J. Moore, Modeling the Effects of Peripheral Nonlinearity in Listeners With Normal and Impaired Hearing. W. Jesteadt, D.L. Neff, L. Humes, M.R. Leek, Modeling Hearing Loss as an Additional Source of Masking. Part V: Spectral and Temporal Processing in Listeners With Sensorineural Hearing Loss.S. Buus, Introduction. A. Boothroyd, B. Mulhearn, J. Gong, J. Ostroff, Simulation of Sensorineural Hearing Loss: Reducing Spectral Resolution by Linear Frequency Smearing. T. Baer, B.C.J. Moore, Evaluation of a Scheme to Compensate for Reduced Frequency Selectivity in Hearing-Impaired Subjects. M.R. Leek, V. Summers, Timbre Discrimination by Hearing-Impaired Listeners. C. Formby, T.G. Forrest, Measurement and Modelling of Modulation Detection for Normal and Hearing-Impaired Listeners. T.G. Forrest, C. Formby, L.P. Sherlock, Measurement and Modeling of Temporal Gap Detection for Normal and Meniere Listeners. C.W. Turner, Temporal Masking and the ""Active Process"" in Normal and Hearing-Impaired Listeners. M.L. Hawley, H.S. Colburn, Application of Interaural Difference Models to Binaural Performance by Listeners With Hearing Impairments. Part VI: Speech Perception in Listeners With Sensorineural Hearing Loss.J.R. Dubno, Introduction. C.M. Rankovic, Prediction of Speech Reception by Listeners With Sensorineural Hearing Loss. T. Ching, H. Dillon, D. Byrne, Prediction of Speech Performance From Audibility and Psychoacoustic Abilities of Hearing Impaired Listeners. I. Holube, M. Wesselkamp, W.A. Dreschler, B. Kollmeier, Speech Intelligibility Prediction in Hearing-Impaired Listeners for Steady and Fluctuating Noise. A.R. Needleman, C.C. Crandell, Speech Perception in Noise by Listeners With Hearing Impairment and Simulated Sensorineural Hearing Loss. M.S. Hedrick, W. Jesteadt, Influence of Relative Amplitude and Presentation Level on Perception of the /p/ - /t/ Stop Consonant Contrast by Normal and Impaired Listeners."

Reviews

...provides a comprehensive overview of a number of approaches to modeling currently used in hearing research....it serves as a good compendium of the recent work of the most active research laboratories. This makes the volume a useful reference source for the reader with some background in hearing research and may be a good collection for a graduate course on hearing loss. -Contemporary Psychology


Author Information

Walt Jesteadt

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List