|
![]() |
|||
|
||||
OverviewThe investigation of the role of mechanical and mechano-chemical interactions in cellular processes and tissue development is a rapidly growing research field in the life sciences and in biomedical engineering. Quantitative understanding of this important area in the study of biological systems requires the development of adequate mathematical models for the simulation of the evolution of these systems in space and time. Since expertise in various fields is necessary, this calls for a multidisciplinary approach. This edited volume connects basic physical, biological, and physiological concepts to methods for the mathematical modeling of various materials by pursuing a multiscale approach, from subcellular to organ and system level. Written by active researchers, each chapter provides a detailed introduction to a given field, illustrates various approaches to creating models, and explores recent advances and future research perspectives. Topics covered include molecular dynamics simulations of lipid membranes, phenomenological continuum mechanics of tissue growth, and translational cardiovascular modeling. Modeling Biomaterials will be a valuable resource for both non-specialists and experienced researchers from various domains of science, such as applied mathematics, biophysics, computational physiology, and medicine. Full Product DetailsAuthor: Josef Málek , Endre SüliPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2021 Weight: 0.444kg ISBN: 9783030880835ISBN 10: 3030880834 Pages: 276 Publication Date: 22 January 2022 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsFarago, O., A Beginner's Short Guide to Membrane Biophysics.- Misailidis, G., Ferenc, J., Tsiairis, C., Self-Organization of Tissues through Biochemical and Mechanical Signals.- Righi, M., Balbi, V., Foundations of Viscoelasticity and Application to Soft Tissue Mechanics.- Klika, V., Modeling of Biomaterials as an Application of the Theory of Mixtures.- Miller, R., et al., Modeling Biomechanics in the Healthy and Diseased Heart.- Chabiniok, R., et al., Translational Cardiovascular Modeling: Tetralogy of Fallot and Modeling of Diseases.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |