Model-Assisted Bayesian Designs for Dose Finding and Optimization: Methods and Applications

Author:   Ying Yuan (University of Texas, USA) ,  Ruitao Lin (University of Texas, USA) ,  J. Jack Lee (University of Texas, USA)
Publisher:   Taylor & Francis Ltd
ISBN:  

9780367146245


Pages:   220
Publication Date:   11 November 2022
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $194.00 Quantity:  
Add to Cart

Share |

Model-Assisted Bayesian Designs for Dose Finding and Optimization: Methods and Applications


Overview

Full Product Details

Author:   Ying Yuan (University of Texas, USA) ,  Ruitao Lin (University of Texas, USA) ,  J. Jack Lee (University of Texas, USA)
Publisher:   Taylor & Francis Ltd
Imprint:   Chapman & Hall/CRC
Weight:   0.453kg
ISBN:  

9780367146245


ISBN 10:   036714624
Pages:   220
Publication Date:   11 November 2022
Audience:   General/trade ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

"""This book is a must for someone that wants to work with the aforementioned models using SAS and wants a step-by-step guide on how and when to implement those models. Each chapter is organized in a very similar manner... It is one of the best books on applied statistics I have read up to this point. I am sure you will find it great as well if you are part of the intended target audience, as I have described above. Particularly for non-statisticians that have an upcoming analysis where linear regression or ANOVA models are planned, the book is a must in order to make sure the proper method is used, what to check, what alternatives there are and how to properly read and interpret the results when using SAS."" David Manteigas, Portugal, ISCB News, May 2024."


""This book is a must for someone that wants to work with the aforementioned models using SAS and wants a step-by-step guide on how and when to implement those models. Each chapter is organized in a very similar manner... It is one of the best books on applied statistics I have read up to this point. I am sure you will find it great as well if you are part of the intended target audience, as I have described above. Particularly for non-statisticians that have an upcoming analysis where linear regression or ANOVA models are planned, the book is a must in order to make sure the proper method is used, what to check, what alternatives there are and how to properly read and interpret the results when using SAS."" David Manteigas, Portugal, ISCB News, May 2024.


Author Information

Ying Yuan, Ph.D., is Bettyann Asche Murray Distinguished Professor in Biostatistics and Deputy Chair at the Department of Biostatistics at the University of Texas MD Anderson Cancer Center. He has published over 100 statistical methodology papers on innovative Bayesian adaptive designs, including early phase trials, seamless trials, biomarker-guided trials, and basket and platform trials. The designs and software developed by Dr. Yuan’s and Dr. J. Jack Lee’s team (www.trialdesign.org) have been widely used in medical research institutes and pharmaceutical companies. The BOIN design developed by Dr. Yuan’s team is the first oncology dose-finding design designated as a fit-for-purpose drug development tool by FDA. Dr. Yuan is an elected Fellow of the American Statistical Association, and is a co-author of the book Bayesian Designs for Phase I-II Clinical Trials published by Chapman & Hall/CRC Press. Ruitao Lin, Ph.D., is an Assistant Professor in the Department of Biostatistics at the University of Texas MD Anderson Cancer Center. Motivated by the unmet need for the development of precision medicine, Dr. Lin has developed many innovative statistical designs to increase trial efficiency, optimize healthcare decisions, and expedite drug development. He made substantial contributions to generalize model-assisted designs, including BOIN, to handle combination trials, late-onset toxicity, and dose optimization. Dr. Lin has published over 40 papers in top statistical and medical journals. He currently is an Associate Editor of Biometrial Journal, Pharmaceutical Statistics, and Contemporary Clinical Trials. J. Jack Lee, Ph.D., is a Professor of Biostatistics, Kenedy Foundation Chair in Cancer Research, and Associate Vice President in Quantitative Sciences at the University of Texas MD Anderson Cancer Center. He is an expert on the design and analysis of Bayesian adaptive designs, platform trials, basket trials, umbrella trials, master protocols, statistical computation/graphics, drug combination studies, and biomarkers identification and validation. Dr. Lee has also been actively participating in basic, translational, and clinical cancer research in chemoprevention, immuno-oncology, and precision oncology. He is an elected Fellow of the American Statistical Association, the Society for Clinical Trials, and the American Association for the Advancement of Science. He is Statistical Editor of Cancer Prevention Research and serves on the Statistical Editorial Board of Journal of the National Cancer Institute. He has over 500 publications and is a co-author of the book Bayesian Adaptive Methods for Clinical Trials published by Chapman & Hall/CRC Press.

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List