|
![]() |
|||
|
||||
OverviewIn mathematical physics, Minkowski space or Minkowski spacetime is a combination of Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be an immediate consequence of the postulates of special relativity. Minkowski space is closely associated with Einstein's theory of special relativity, and is the most common mathematical structure on which special relativity is formulated. While the individual components in Euclidean space and time will often differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total distance in spacetime between events. Because it treats time differently than the three spatial dimensions, Minkowski space differs from four-dimensional Euclidean space. In Euclidean space, the isometry group (the maps preserving the regular inner product) is the Euclidean group. The analogous isometry group for Minkowski space, preserving intervals of spacetime equipped with the associated non-positive definite bilinear form (here called the Minkowski inner product, ) is the Poincare group. The Minkowski inner product is defined as to yield the spacetime interval between two events when given their coordinate difference vector as argument.This book is designed to be a general overview of the topic and provide you with the structured knowledge to familiarize yourself with the topic at the most affordable price possible. The level of discussion is that of Wikipedia. The accuracy and knowledge is of an international viewpoint as the edited articles represent the inputs of many knowledgeable individuals and some of the most currently available general knowledge on the topic based on the date of publication. Full Product DetailsAuthor: Paul F KisakPublisher: Createspace Independent Publishing Platform Imprint: Createspace Independent Publishing Platform Dimensions: Width: 21.60cm , Height: 1.30cm , Length: 28.00cm Weight: 0.590kg ISBN: 9781533561688ISBN 10: 1533561680 Pages: 252 Publication Date: 25 May 2016 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationThe editor has degrees in Engineering Physics & Nuclear Engineering from the University of Michigan and is an Engineer & Former Intelligence Officer for the CIA & US Intelligence Community and was President of an award-winning Defense Contracting Company. He has authored several books, edited numerous books and has written over 75 Technical, Classified & Unclassified papers, Articles & Essays. He has also been a Contributing Author for The International Encyclopedia on Intelligence and Counter-Intelligence and written several award-winning software manuals that have been sold in more than a dozen countries. He has also appeared in Marquis Who's Who in the World & Who's Who in Science & Engineering and continues to edit and write. Tab Content 6Author Website:Countries AvailableAll regions |