|
![]() |
|||
|
||||
OverviewMining Spatio-Temporal Information Systems, an edited volume is composed of chapters from leading experts in the field of Spatial-Temporal Information Systems and addresses the many issues in support of modeling, creation, querying, visualizing and mining. Mining Spatio-Temporal Information Systems is intended to bring together a coherent body of recent knowledge relating to STIS data modeling, design, implementation and STIS in knowledge discovery. In particular, the reader is exposed to the latest techniques for the practical design of STIS, essential for complex query processing. Mining Spatio-Temporal Information Systems is structured to meet the needs of practitioners and researchers in industry and graduate-level students in Computer Science. Full Product DetailsAuthor: Roy Ladner , Kevin Shaw , Mahdi AbdelguerfiPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 1st ed. 2002 Volume: 699 Dimensions: Width: 15.50cm , Height: 1.00cm , Length: 23.50cm Weight: 0.291kg ISBN: 9781461354161ISBN 10: 1461354161 Pages: 170 Publication Date: 22 March 2013 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1: Spatio-Temporal Data Mining and Knowledge Discovery: Issues Overview.- 1. Introduction.- 2. Background.- 3. Data.- 4. Data Issues.- 5. Conclusions.- 2: Indexing of Objects on the Move.- 1. Introduction.- 2. Problem Statement and Related Work.- 3. The TPR-Tree.- 4. The REXP-Tree.- 5. Summary of Performance Experiments.- 6. Conclusions.- 3: Efficient Storage of Large Volume Spatial and Temporal Point-Data in an Object-Oriented Database.- 1. Introduction.- 2. The GIDB System.- 3. The Problem Domain.- 4. An Object-Oriented Solution.- 5. Requirements.- 6. Towards a Solution.- 7. The Design.- 8. A Flexible Framework.- 9. Sample Applications.- 10. Evaluation.- 11. Future Developments.- 12. Conclusions.- 4: A Typology of Spatiotemporal Information Queries.- 1. Introduction.- 2. Spatiotemporal Information for the Dynamic World.- 3. A Typology of Spatiotemporal Queries.- 4. Conclusions.- 5: Visual Query of Time-Dependent 3D Weather in a Global Geospatial Environment.- 1. Introduction.- 2. 4D Data Model for the Visual Earth.- 3. Scalable, Hierarchical 3D Data Structure.- 4. Interactive, Accurate Visualization of Nonuniform Data.- 6: STQL — A Spatio-Temporal Query Language.- 1. Introduction.- 2. Related Work.- 3. The Data Model.- 4. Querying with Spatio-Temporal Operations.- 5. Visual Querying.- 6. Conclusions.- 7: Tripod: A Spatio-Historical Object Database System.- 1. Introduction.- 2. Case Study: UK National Land Use Database.- 3. The Tripod Object Model.- 4. Architecture.- 5. Related Work.- 6. Conclusions.- 8: Spatio-Temporal Subgroup Discovery.- 1. Introduction: Spatial Subgroup Mining.- 2. Application Example.- 3. Representation of Spatio-Temporal Data and of Spatial Subgroups.- 4. Spatio-Temporal Analyses.- 5. Database Integration.- 6. Conclusions and Future Work.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |