Minimax Theorems

Author:   Michel Willem
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1996
Volume:   24
ISBN:  

9781461286738


Pages:   165
Publication Date:   26 September 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $422.37 Quantity:  
Add to Cart

Share |

Minimax Theorems


Add your own review!

Overview

Many boundary value problems are equivalent to Au=O (1) where A : X ---+ Y is a mapping between two Banach spaces. When the problem is variational, there exists a differentiable functional 0 and e E X such that lIell > rand inf

Full Product Details

Author:   Michel Willem
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1996
Volume:   24
Dimensions:   Width: 15.50cm , Height: 0.90cm , Length: 23.50cm
Weight:   0.283kg
ISBN:  

9781461286738


ISBN 10:   1461286735
Pages:   165
Publication Date:   26 September 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Mountain pass theorem.- 1.1 Differentiable functionals.- 1.2 Quantitative deformation lemma.- 1.3 Mountain pass theorem.- 1.4 Semilinear Dirichlet problem.- 1.5 Symmetry and compactness.- 1.6 Symmetric solitary waves.- 1.7 Subcritical Sobolev inequalities.- 1.8 Non symmetric solitary waves.- 1.9 Critical Sobolev inequality.- 1.10 Critical nonlinearities.- 2 Linking theorem.- 2.1 Quantitative deformation lemma.- 2.2 Ekeland variational principle.- 2.3 General minimax principle.- 2.4 Semilinear Dirichlet problem.- 2.5 Location theorem.- 2.6 Critical nonlinearities.- 3 Fountain theorem.- 3.1 Equivariant deformation.- 3.2 Fountain theorem.- 3.3 Semilinear Dirichlet problem.- 3.4 Multiple solitary waves.- 3.5 A dual theorem.- 3.6 Concave and convex nonlinearities.- 3.7 Concave and critical nonlinearities.- 4 Nehari manifold.- 4.1 Definition of Nehari manifold.- 4.2 Ground states.- 4.3 Properties of critical values.- 4.4 Nodal solutions.- 5 Relative category.- 5.1 Category.- 5.2 Relative category.- 5.3 Quantitative deformation lemma.- 5.4 Minimax theorem.- 5.5 Critical nonlinearities.- 6 Generalized linking theorem.- 6.1 Degree theory.- 6.2 Pseudogradient flow.- 6.3 Generalized linking theorem.- 6.4 Semilinear Schrödinger equation.- 7 Generalized Kadomtsev-Petviashvili equation.- 7.1 Definition of solitary waves.- 7.2 Functional setting.- 7.3 Existence of solitary waves.- 7.4 Variational identity.- 8 Representation of Palais-Smale sequences.- 8.1 Invariance by translations.- 8.2 Symmetric domains.- 8.3 Invariance by dilations.- 8.4 Symmetric domains.- Appendix A: Superposition operator.- Appendix B: Variational identities.- Appendix C: Symmetry of minimizers.- Appendix D: Topological degree.- Index of Notations.

Reviews

The material is presented in a unified way, and the proofs are concise and elegant... Essentially self-contained. --Mathematical Reviews


"""The material is presented in a unified way, and the proofs are concise and elegant... Essentially self-contained."" --Mathematical Reviews"


The material is presented in a unified way, and the proofs are concise and elegant... Essentially self-contained. --Mathematical Reviews


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List