Microfluidic Cell Culture Systems

Author:   Jeffrey T Borenstein (Laboratory Technical Staff, Draper, Massachusetts, USA) ,  Vishal Tandon (Senior Member of Technical Staff, Biomedical Engineering Center, Draper, Massachusetts, USA) ,  Sarah L Tao (Biologics Research, Sanofi, Massachusetts, USA) ,  Joseph L. Charest (Biomedical Solutions Program Manager, Draper, Massachusetts, USA)
Publisher:   Elsevier Science Publishing Co Inc
Edition:   2nd edition
ISBN:  

9780128136713


Pages:   396
Publication Date:   01 September 2018
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $580.80 Quantity:  
Add to Cart

Share |

Microfluidic Cell Culture Systems


Add your own review!

Overview

Techniques for microfabricating intricate microfluidic structures that mimic the microenvironment of tissues and organs, combined with the development of biomaterials with carefully engineered surface properties, have enabled new paradigms in and cell culture-based models for human diseases. The dimensions of surface features and fluidic channels made accessible by these techniques are well-suited to the size scale of biological cells. Microfluidic Cell Culture Systems applies design and experimental techniques used in in microfluidics, and cell culture technologies to organ-on-chip systems. This book is intended to serve as a professional reference, providing a practical guide to design and fabrication of microfluidic systems and biomaterials for use in cell culture systems and human organ models. The book covers topics ranging from academic first principles of microfluidic design, to clinical translation strategies for cell culture protocols. The goal is to help professionals coming from an engineering background to adapt their expertise for use in cell culture and organ models applications, and likewise to help biologists to design and employ microfluidic technologies in their cell culture systems. This 2nd edition contains new material that strengthens the focus on in vitro models useful for drug discovery and development. One new chapter reviews liver organ models from an industry perspective, while others cover new technologies for scaling these models and for multi-organ systems. Other new chapters highlight the development of organ models and systems for specific applications in disease modeling and drug safety. Previous chapters have been revised to reflect the latest advances.

Full Product Details

Author:   Jeffrey T Borenstein (Laboratory Technical Staff, Draper, Massachusetts, USA) ,  Vishal Tandon (Senior Member of Technical Staff, Biomedical Engineering Center, Draper, Massachusetts, USA) ,  Sarah L Tao (Biologics Research, Sanofi, Massachusetts, USA) ,  Joseph L. Charest (Biomedical Solutions Program Manager, Draper, Massachusetts, USA)
Publisher:   Elsevier Science Publishing Co Inc
Imprint:   Elsevier Science Publishing Co Inc
Edition:   2nd edition
Weight:   0.970kg
ISBN:  

9780128136713


ISBN 10:   0128136715
Pages:   396
Publication Date:   01 September 2018
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Part 1: Introduction 1. Microfluidic Cell Culture Technologies 2. Inertial microfluidics for stem cell isolation 3. Microfluidic Structures for Controlling Stem Cell Microenvironments 4. Microfluidic cell culture platforms with embedded nanoscale features 5. Microfluidic Vascular Networks for Engineered Tissues 6. Direct Write Assembly of Organ Models 7. 3D Bioprinting for Organ Models Part II: Organ-Specific Disease and Drug Safety Models 8. Microfabricated Kidney Tissue Models 9. Microfluidic Hepatotoxicity Platform 10. Dynamic Gastrointestinal and Pulmonary Organ Models 11. Cardiac Models 12. Neural Tissue Microphysiological Systems 13. Models of the Female Reproductive Tract 14. Microscale Models of Inflammatory Diseases 15. Blood-Retinal Barrier-on-a –chip 16. Human blinking eye-on-a chip 17. Circulating tumor cell cultures for evaluation of anticancer treatment Part III: Technologies for Sensing, Multiplexed and Interconnected Organ Models 18. Live Cell Analysis Under Shear Flow 19. High Throughput Flow Systems for Cardiovascular Research 20. Phaseguide technology for connected organ models 21. Electromagnetically microactuated platforms for dynamic microphysiological systems 22. Interconnected organ models for skin and liver 23. Heart-Liver-Vascular Interconnected Microphysiological Systems 24. Rocking Platform Technology for Interconnected Organ Models

Reviews

Author Information

Jeffrey T. Borenstein is Laboratory Technical Staff at the Charles Stark Draper Laboratory in Cambridge, Massachusetts, USA. Dr. Borenstein is a Technical Director for several of Draper’s programs in artificial organs, tissue engineering and implantable devices. His expertise is in MEMS fabrication technology, biological microsystems and the development of microdevices for therapeutic clinical applications. Dr. Borenstein currently serves as Principal Investigator for projects involving the application of microsystems technology towards engineered tissue constructs for organ assist devices and drug discovery, as well as implantable drug delivery systems for hearing loss and other diseases. These programs are funded by the Department of Defense, the National Institutes of Health and several commercial sponsors. Vishal Tandon is a Research Fellow at the Biomedical Engineering Center, Draper University, USA. His research focuses on the design and testing of implantable microfluidic devices for drug delivery into the ear. Sarah Tao is Senior Manager, New Technologies at CooperVision, Inc. She was previously Senior Member Technical Staff, MEMS Design Group at Draper University, and Research Professor Equivalent, Bioengineering and Therapeutic Sciences at the University of California, San Francisco, USA. Her research interests lie in the areas of biomaterials, nanotechnology, regenerative medicine, drug delivery, BioMEMS, microfluidics and cell culture. Dr. Charest is director of in vitro model and organ-assist work at Draper Laboratory. The work of his teams leverages micro- and nano-fabrication along with advanced machining techniques to create systems which recapitulate native tissue and organ architecture, morphology, and function in vitro. The systems span applications from medical devices to screening platforms for pharmaceuticals, and impact fields of use in various organ and tissue types such as tumor, kidney, vascular tissue and lung. Dr. Charest graduated from Georgia Tech with an MS and PhD in Mechanical Engineering and from Penn State with a BS in Mechanical Engineering.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List