|
![]() |
|||
|
||||
OverviewThis meticulous book explores the leading methodologies, techniques, and tools for microarray data analysis, given the difficulty of harnessing the enormous amount of data. The book includes examples and code in R, requiring only an introductory computer science understanding, and the structure and the presentation of the chapters make it suitable for use in bioinformatics courses. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of key detail and expert implementation advice that ensures successful results and reproducibility. Authoritative and practical, Microarray Data Analysis is an ideal guide for students or researchers who need to learn the main research topics and practitioners who continue to work with microarray datasets. Full Product DetailsAuthor: Giuseppe AgapitoPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 1st ed. 2022 Volume: 2401 Weight: 0.823kg ISBN: 9781071618387ISBN 10: 1071618385 Pages: 317 Publication Date: 14 December 2021 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1. Tools in Pharmacogenomics Biomarker Identification for Cancer Patients Francesca Scionti, Maria Teresa Di Martino, Daniele Caracciolo, Licia Pensabene, Pierosandro Tagliaferri, and Mariamena Arbitrio 2. High Performance Framework to Analyze Microarray Data Fabrizio Marozzo and Loris Belcastro 3. Web and Cloud Computing to Analyze Microarray Data Barbara Calabrese 4. A Microarray Analysis Technique Using a Self-Organizing Multi-Agent Approach Agostino Forestiero, Giuseppe Papuzzo, Rosaria De Simone, and Rosa Varchera 5. Improving Analysis and Annotation of Microarray Data with Protein Interactions Max Kotlyar, Serene W.H. Wong, Chiara Pastrello, and Igor Jurisica 6. Algorithms to Preprocess Microarray Image Data Paolo Zaffino and Maria Francesca Spadea 7. Microarray Data Preprocessing: From Experimental Design to Differential Analysis Antonio Federico, Laura Aliisa Saarimäki, Angela Serra, Giusy del Giudice, Pia Anneli Sofia Kinaret, Giovanni Scala, and Dario Greco 8. Supervised Methods for Biomarker Detection from Microarray Experiments Angela Serra, Luca Cattelani, Michele Fratello, Vittorio Fortino, Pia Anneli Sofia Kinaret, and Dario Greco 9. Unsupervised Algorithms for Microarray Sample Stratification Michele Fratello, Luca Cattelani, Antonio Federico, Alisa Pavel, Giovanni Scala, Angela Serra, and Dario Greco 10. Pathway Enrichment Analysis of Microarray Data Chiara Pastrello, Yun Niu, and Igor Jurisica 11. Network Analysis of Microarray Data Alisa Pavel, Angela Serra, Luca Cattelani, Antonio Federico, and Dario Greco 12. geneExpressionFromGEO: An R Package to Facilitate Data Reading from Gene Expression Omnibus (GEO) Davide Chicco 13. Scenarios for the Integration of Microarray Gene Expression Profiles in COVID-19-Related Studies Anna Bernasconi and Silvia Cascianelli 14. Alignment of Microarray Data Francesco Cauteruccio 15. Integration of DNA Microarray with Clinical and Genomic Data Francesca Scionti, Mariamena Arbitrio, Daniele Caracciolo, Licia Pensabene, Pierfrancesco Tassone, Pierosandro Tagliaferri, and Maria Teresa Di Martino 16. Clustering Methods for Microarray Data Sets Giuseppe Agapito and Giuseppe Fedele 17. Microarray Data Analysis Protocol Giuseppe Agapito and Mariamena Arbitrio 18. Using Gene Ontology to Annotate and Prioritize Microarray Data Marianna Milano 19. Using MMRFBiolinks R-Package for Discovering Prognostic Markers in Multiple Myeloma Marzia Settino and Mario CannataroReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |