|
![]() |
|||
|
||||
OverviewThisvolumecontainsthewrittenversionsofinvitedlecturespresentedat the""39. InternationaleUniversitatswochenfur .. Kern-undTeilchenphysik""in Schladming, Austria, which took place from February 26th to March 4th, 2000. The title of the school was ""Methods of Quantization"". This is, of course,averybroad?eld,soonlysomeofthenewandinterestingdevel- mentscouldbecoveredwithinthescopeoftheschool. About75yearsagoSchrodingerpresentedhisfamouswaveequationand Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic systems, these original developments did not take into consideration E- stein'stheoryofspecialrelativity. WiththeworkofDirac,Heisenberg,and Pauliitsoonbecameobviousthatauni?edtreatmentofrelativisticandqu- tume?ectsisachievedbymeansoflocalquantum?eldtheory,i. e. anintrinsic many-particletheory. Mostofourpresentunderstandingoftheelementary buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ- tizedversionof?eldtheorieswhicharelocallysymmetricundergaugetra- formations. Nowadays,theprevailingtoolsforquantum-?eldtheoreticalc- culationsarecovariantperturbationtheoryandfunctional-integralmethods. Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum-?eld theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar nonrelativisticquantummechanicsofpointparticles. Aparticularlyintere- ingHamiltonianformulationofquantum-?eldtheoriesisobtainedbyqu- tizingthe?eldsonhypersurfacesoftheMinkowsispacewhicharetangential tothelightcone. The""timeevolution""ofthesystemisthenconsideredin + ""light-conetime""x =t+z/c. Theappealingfeaturesof""light-conequ- tization"",whicharethereasonsfortherenewedinterestinthisformulation ofquantum?eldtheories,werehighlightedinthelecturesofBernardBakker andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A generalformalismforthequantizationofphysicalsystemswithconstraints waspresentedbyJohnKlauder. Theperturbativede?nitionofquantum?eld theoriesisingenerala?ictedbysingularitieswhichareovercomebyare- larizationandrenormalizationprocedure. Structuralaspectsoftherenormal- VI Preface izationprobleminthecaseofgaugeinvariant?eldtheorieswerediscussed inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe functional-integralquantizationwasgivenbyLudwigStreit. Apartfromthetopicsincludedinthisvolumetherewerealsolectures ontheKaluza-odingerpresentedhisfamouswaveequationand Heisenbergcameupwithhisalgebraicapproachtothequantum-theoretical treatmentofatoms. Aimingmainlyatanappropriatedescriptionofatomic systems, these original developments did not take into consideration E- stein'stheoryofspecialrelativity. WiththeworkofDirac,Heisenberg,and Pauliitsoonbecameobviousthatauni?edtreatmentofrelativisticandqu- tume?ectsisachievedbymeansoflocalquantum?eldtheory,i. e. anintrinsic many-particletheory. Mostofourpresentunderstandingoftheelementary buildingblocksofmatterandtheforcesbetweenthemisbasedonthequ- tizedversionof?eldtheorieswhicharelocallysymmetricundergaugetra- formations. Nowadays,theprevailingtoolsforquantum-?eldtheoreticalc- culationsarecovariantperturbationtheoryandfunctional-integralmethods. Beingnotmanifestlycovariant,theHamiltonianapproachtoquantum-?eld theorieslagssomewhatbehind,althoughitresemblesverymuchthefamiliar nonrelativisticquantummechanicsofpointparticles. Aparticularlyintere- ingHamiltonianformulationofquantum-?eldtheoriesisobtainedbyqu- tizingthe? eldsonhypersurfacesoftheMinkowsispacewhicharetangential tothelightcone. The""timeevolution""ofthesystemisthenconsideredin + ""light-conetime""x =t+z/c. Theappealingfeaturesof""light-conequ- tization"",whicharethereasonsfortherenewedinterestinthisformulation ofquantum?eldtheories,werehighlightedinthelecturesofBernardBakker andThomasHeinzl. Oneoftheopenproblemsoflight-conequantizationis theissueofspontaneoussymmetrybreaking. Thiscanbetracedbacktozero modeswhich,ingeneral,aresubjecttocomplicatedconstraintequations. A generalformalismforthequantizationofphysicalsystemswithconstraints waspresentedbyJohnKlauder. Theperturbativede?nitionofquantum?eld theoriesisingenerala?ictedbysingularitieswhichareovercomebyare- larizationandrenormalizationprocedure. Structuralaspectsoftherenormal- VI Preface izationprobleminthecaseofgaugeinvariant?eldtheorieswerediscussed inthelectureofKlausSibold. Areviewofthemathematicsunderlyingthe functional-integralquantizationwasgivenbyLudwigStreit. Apartfromthetopicsincludedinthisvolumetherewerealsolectures ontheKaluza-Kleinprogramforsupergravity(P. vanNieuwenhuizen),on dynamicalr-matricesandquantization(A. Alekseev),andonthequantum Liouvillemodelasaninstructiveexampleofquantumintegrablemodels(L. Faddeev). Inaddition,theschoolwascomplementedbymanyexcellents- inars. Thelistofseminarspeakersandthetopicsaddressedbythemcanbe foundattheendofthisvolume. Theinterestedreaderisrequestedtocontact thespeakersdirectlyfordetailedinformationorpertinentmaterial. Finally,wewouldliketoexpressourgratitudetothelecturersforalltheir e?ortsandtothemainsponsorsoftheschool,theAustrianMinistryofE- cation,Science,andCultureandtheGovernmentofStyria,forprovidingg- eroussupport. Wealsoappreciatethevaluableorganizationalandtechnical assistanceofthetownofSchladming,theSteyr-Daimler-PuchFahrzeugte- nik, Ricoh Austria, Styria Online, and the Hornig company. Furthermore, wethankoursecretaries,S. FuchsandE. Monschein,anumberofgra- atestudentsfromourinstitute,and,lastbutnotleast,ourcolleaguesfrom theorganizingcommitteefortheirassistanceinpreparingandrunningthe school. Graz, HeimoLatal March2001 WolfgangSchweiger Contents FormsofRelativisticDynamics BernardL. G. Bakker...1 1 Introduction...1 2 ThePoincar'eGroup...3 3 FormsofRelativisticDynamics...4 3. 1 ComparisonofInstantForm,FrontForm,andPointForm...6 4 Light-FrontDynamics...9 4. 1 RelativeMomentum,InvariantMass...9 4. 2 TheBoxDiagram...14 5 Poincar'eGeneratorsinFieldTheory...19 5. 1 FermionsInteractingwithaScalarField...20 5. 2 InstantForm...20 5. 3 FrontForm(LF)...21 5. 4 InteractingandNon-interactingGeneratorsonanInstant andontheLightFront...22 6 Light-FrontPerturbationTheory...23 6. 1 ConnectionofCovariantAmplitudes toLight-FrontAmplitudes...24 6. 2 Regularization...26 6. 3 MinusRegularization...26 7 TriangleDiagraminYukawaTheory...27 7. 1 CovariantCalculation ...28 7. 2 ConstructionoftheCurrentinLFD...30 7. 3 NumericalResults...37 3 8 FourVariationsonaThemein? Theory...37 8. 1 CovariantCalculation...39 8. 2 Instant-FormCalculation...42 8. 3 CalculationinLight-FrontCoordinates...47 8. 4 Front-FormCalculation...49 9 DimensionalRegularization:BasicFormulae...51 10 Four-DimensionalIntegration...52 11 SomeUsefulIntegrals...53 References...53 VIII Contents Light-ConeQuantization:FoundationsandApplications ThomasHeinzl... Full Product DetailsAuthor: Heimo Latal , Wolfgang SchweigerPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 2001 Volume: 572 Dimensions: Width: 15.50cm , Height: 1.30cm , Length: 23.50cm Weight: 0.379kg ISBN: 9783662143360ISBN 10: 3662143364 Pages: 228 Publication Date: 03 October 2013 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |