|
![]() |
|||
|
||||
OverviewControl theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of these notes is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory. I began the development of these notes over fifteen years ago with a series of lectures given to the Control Group at the Lund Institute of Technology in Sweden. Over the following years, I presented the material in courses at Brown several times and must express my appreciation for the feedback (sic!) received from the students. I have attempted throughout to strive for clarity, often making use of constructive methods and giving several proofs of a particular result. Since algebraic geometry draws on so many branches of mathematics and can be dauntingly abstract, it is not easy to convey its beauty and utility to those interested in applications. I hope at least to have stirred the reader to seek a deeper understanding of this beauty and utility in control theory. The first volume dea1s with the simplest control systems (i. e. single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i. e. affine algebraic geometry). Full Product DetailsAuthor: Peter FalbPublisher: Birkhauser Boston Inc Imprint: Birkhauser Boston Inc Edition: Softcover reprint of the original 1st ed. 1990 Volume: 4 Dimensions: Width: 15.20cm , Height: 1.10cm , Length: 22.90cm Weight: 0.317kg ISBN: 9781468492231ISBN 10: 1468492233 Pages: 204 Publication Date: 12 June 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents0. Introduction.- 1. Scalar Linear Systems over the Complex Numbers.- 2. Scalar Linear Systems over a Field k.- 3. Factoring Polynomials.- 4. Affine Algebraic Geometry: Algebraic Sets.- 5. Affine Algebraic Geometry: The Hilbert Theorems.- 6. Affine Algebraic Geometry: Irreducibility.- 7. Affine Algebraic Geometry: Regular Functions and Morphisms I.- 8. The Laurent Isomorphism Theorem.- 9. Affine Algebraic Geometry: Regular Functions and Morphisms II.- 10. The State Space: Realizations.- 11. The State Space: Controllability, Observability, Equivalence.- 12. Affine Algebraic Geometry: Products, Graphs and Projections.- 13. Group Actions, Equivalence and Invariants.- 14. The Geometric Quotient Theorem: Introduction.- 15. The Geometric Quotient Theorem: Closed Orbits.- 16. Affine Algebraic Geometry: Dimension.- 17. The Geometric Quotient Theorem: Open on Invariant Sets.- 18. Affine Algebraic Geometry: Fibers of Morphisms.- 19. The Geometric Quotient Theorem: The Ring of Invariants.- 20. Affine Algebraic Geometry: Simple Points.- 21. Feedback and the Pole Placement Theorem.- 22. Affine Algebraic Geometry: Varieties.- 23. Interlude.- Appendix A: Tensor Products.- Appendix B: Actions of Reductive Groups.- Appendix C: Symmetric Functions and Symmetric Group Actions.- Appendix D: Derivations and Separability.- Problems.- References.Reviews<p> The exposition is extremely clear. In order to motivate the general theory, the author presents a number of examples of two or three input-, two-output systems in detail. I highly recommend this excellent book to all those interested in the interplay between control theory and algebraic geometry. Publicationes Mathematicae, Debrecen <p> This book is the multivariable counterpart of Methods of Algebraic Geometry in Control Theory, Part I . In the first volume the simpler single-input single-output time-invariant linear systems were considered and the corresponding simpler affine algebraic geometry was used as the required prerequisite. Obviously, multivariable systems are more difficult and consequently the algebraic results are deeper and less transparent, but essential in the understanding of linear control theory . Each chapter contains illustrative examples throughout and terminates with some exercises for further study. Mathematical Reviews """This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians."" —Monatshefte für Mathematik" This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians. -Monatshefte fur Mathematik Author InformationTab Content 6Author Website:Countries AvailableAll regions |