|
![]() |
|||
|
||||
OverviewThis book provides a comprehensive description of microsensors for mechanical quantities (flow, pressure, force, inertia) fabricated by silicon micromachining. Since the design of such sensors requires interdisciplinary teamwork, the presentation is made accessible to engineers trained in electrical and mechanical engineering, physics and chemistry. The reader is guided through the micromachining fabrication process. A chapter on microsensor packaging completes the discussion of technological problems. The description of the basic physics required for sensor design includes the mechanics of deformation and the piezoresistive transduction to electrical signals. There is also a comprehensive discussion of resonant sensors, the hydrodynamics and heat transfer relevant for flow sensors, and, finally, electronic interfacing and readout circuitry. Numerous up-to-date case studies are presented, together with the working, fabrication and design of the sensors. Full Product DetailsAuthor: M. Elwenspoek , R. WiegerinkPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2001 ed. Dimensions: Width: 15.50cm , Height: 1.90cm , Length: 23.50cm Weight: 1.340kg ISBN: 9783540675822ISBN 10: 3540675825 Pages: 295 Publication Date: 27 November 2000 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Introduction.- 2. MEMS.- 2.1 Miniaturisation and Systems.- 2.2 Examples for MEMS.- 2.2.1 Bubble Jet.- 2.2.2 Actuators.- 2.2.3 Micropumps.- 2.3 Small and Large: Scaling.- 2.3.1 Electromagnetic Forces.- 2.3.2 Coulomb Friction.- 2.3.3 Mechanical Strength.- 2.3.4 Dynamic Properties.- 2.4 Available Fabrication Technology.- 2.4.1 Technologies Based on Lithography.- 2.4.1.1 Silicon Micromachining.- 2.4.1.2 LIGA.- 2.4.2 Miniaturisation of Conventional Technologies.- 3. Introduction into Silicon Micromachining.- 3.1 Photolithography.- 3.2 Thin Film Deposition and Doping.- 3.2.1 Silicon Dioxide.- 3.2.2 Chemical Vapour Deposition.- 3.2.3 Evaporation.- 3.2.4 Sputterdeposition.- 3.2.5 Doping.- 3.3 Wet Chemical Etching.- 3.3.1 Isotropic Etching.- 3.3.2 Anisotropic Etching.- 3.3.3 Etch Stop.- 3.4 Waferbonding.- 3.4.1 Anodic Bonding.- 3.4.2 Silicon Fusion Bonding.- 3.5 Plasma Etching.- 3.5.1 Plasma.- 3.5.2 Anisotropic Plasma Etching Modes.- 3.5.3 Configurations.- 3.5.4 Black Silicon Method.- 3.6 Surface Micromachining.- 3.6.1 Thin Film Stress.- 3.6.2 Sticking.- 4. Mechanics of Membranes and Beams.- 4.1 Dynamics of the Mass Spring System.- 4.2 Strings.- 4.3 Beams.- 4.3.1 Stress and Strain.- 4.3.2 Bending Energy.- 4.3.3 Radius of Curvature.- 4.3.4 Lagrange Function of a Flexible Beam.- 4.3.5 Differential Equation for Beams.- 4.3.6 Boundary Conditions for Beams.- 4.3.7 Examples.- 4.3.8 Mechanical Stability.- 4.3.9 Transversal Vibration of Beams.- 4.4 Diaphragms and Membranes.- 4.4.1 Circular Diaphragms.- 4.4.2 Square Membranes.- Appendix 4.1: Buckling of Bridges.- 5. Principles of Measuring Mechanical Quantities: Transduction of Deformation.- 5.1 Metal Strain Gauges.- 5.2 Semiconductor Strain Gauges.- 5.2.1 Piezoresistive Effect in Single Crystalline Silicon.- 5.2.2 Piezoresistive Effect in Polysilicon Thin Films.- 5.2.3 Transduction from Deformation to Resistance.- 5.3 Capacitive Transducers.- 5.3.1 Electromechanics.- 5.3.2 Diaphragm Pressure Sensors.- 6. Force and Pressure Sensors.- 6.1 Force Sensors.- 6.1.1 Load Cells.- 6.2 Pressure Sensors.- 6.2.1 Piezoresistive Pressure Sensors.- 6.2.2 Capacitive Pressure Sensors.- 6.2.3 Force Compensation Pressure Sensors.- 6.2.4 Resonant Pressure Sensors.- 6.2.5 Miniature Microphones.- 6.2.6 Tactile Imaging Arrays.- 7. Acceleration and Angular Rate Sensors.- 7.1 Acceleration Sensors.- 7.1.1 Introduction.- 7.1.2 Bulk Micromachined Accelerometers.- 7.1.3 Surface Micromachined Accelerometers.- 7.1.4 Force Feedback.- 7.2 Angular Rate Sensors.- 8. Flow sensors.- 8.1 The Laminar Boundary Layer.- 8.1.1 The Navier-Stokes Equations.- 8.1.2 Heat Transport.- 8.1.3 Hydrodynamic Boundary Layer.- 8.1.4 Thermal Boundary Layer.- 8.1.5 Skin Friction and Heat Transfer.- 8.2 Heat Transport in the Limit of Very Small Reynolds Numbers.- 8.3 Thermal Flow Sensors.- 8.3.1 Anemometer Type Flow Sensors.- 8.3.2 Two-Wire Anemometers.- 8.3.3 Calorimetric Type Flow Sensors.- 8.3.4 Sound Intensity Sensors — The Microflown.- 8.3.5 Time of Flight Sensors.- 8.4 Skin Friction Sensors.- 8.5 “Dry Fluid Flow” Sensors.- 8.6 “Wet Fluid Flow” Sensors.- 9. Resonant Sensors.- 9.1 Basic Principles and Physics.- 9.1.1 Introduction.- 9.1.2 The Differential Equation of a Prismatic Microbridge.- 9.1.3 Solving the Homogeneous, Undamped Problem using Laplace Transforms.- 9.1.4 Solving the Inhomogeneous Problem by Modal Analysis.- 9.1.5 Response to Axial Loads.- 9.1.6 Quality Factor.- 9.1.7 Nonlinear Large-Amplitude Effects.- 9.2 Excitation and Detection Mechanisms.- 9.2.1 Electrostatic Excitation and Capacitive Detection.- 9.2.2 Magnetic Excitation and Detection.- 9.2.3 Piezoelectric Excitation and Detection.- 9.2.4 Electrothermal Excitation and Piezoresistive Detection.- 9.2.5 Optothermal Excitation and Optical Detection.- 9.2.6 Dielectric Excitation and Detection.- 9.3 Examples and Applications.- 10. Electronic Interfacing.- 10.1 Piezoresistive Sensors.- 10.1.1 Wheatstone Bridge Configurations.- 10.1.2 Amplification of the Bridge Output Voltage.- 10.1.3 Noise and Offset.- 10.1.4 Feedback Control Loops.- 10.1.5 Interfacing with Digital Systems.- 10.1.5.1 Analog-to-Digital Conversion.- 10.1.5.2 Voltage to Frequency Converters.- 10.2 Capacitive Sensors.- 10.2.1 Impedance Bridges.- 10.2.2 Capacitance Controlled Oscillators.- 10.3 Resonant Sensors.- 10.3.1 Frequency Dependent Behavior of Resonant Sensors.- 10.3.2 Realizing an Oscillator.- 10.3.3 One-Port Versus Two-Port Resonators.- 10.3.4 Oscillator Based on One-Port Electrostatically Driven Beam Resonator.- 10.3.5 Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator.- 11. Packaging.- 11.1 Packaging Techniques.- 11.1.1 Standard Packages.- 11.1.2 Chip Mounting Methods.- 11.1.2 Wafer Level Packaging.- 11.1.3 Interconnection Techniques.- 11.1.4 Multichip Modules.- 11.1.5 Encapsulation Processes.- 11.2 Stress Reduction.- 11.3 Pressure Sensors.- 11.4 Inertial Sensors.- 11.5 Thermal Flow Sensors.- References.ReviewsMechanical Microsensors provides a comprehensive description of the various design techniques required for silicon micromachining of sensors. This is a very well written book which has a pleasant balance of mathematical, physics and engineering principles, that make this book suitable for physicists, chemistry, electrical and mechanical engineers. <p>--SENSOR REVIEW <p> Of particular value is the fact that the authors go further than the description of the silicon sensor elements and also present solutions on how to interface these sensors to the surrounding world - electronically in the chapter on 'Electronic Interfacing' as well as physically in the chapter on 'Packaging'. To summarize, this textbook gives a comprehensive overview of mechanical microsensors which is especially well suited for students in courses on mechanical microsensors, but is also valuable for people in research and industry with an interest in this exciting and growing field. <p>-MEASUREMENT SCIENCE AND TECHNOLOGY Mechanical Microsensors provides a comprehensive description of the various design techniques required for silicon micromachining of sensors. This is a very well written book which has a pleasant balance of mathematical, physics and engineering principles, that make this book suitable for physicists, chemistry, electrical and mechanical engineers. --SENSOR REVIEW Of particular value is the fact that the authors go further than the description of the silicon sensor elements and also present solutions on how to interface these sensors to the surrounding world - electronically in the chapter on 'Electronic Interfacing' as well as physically in the chapter on 'Packaging'. To summarize, this textbook gives a comprehensive overview of mechanical microsensors which is especially well suited for students in courses on mechanical microsensors, but is also valuable for people in research and industry with an interest in this exciting and growing field. -MEASUREMENT SCIENCE AND TECHNOLOGY Mechanical Microsensors provides a comprehensive description of the various design techniques required for silicon micromachining of sensors. This is a very well written book which has a pleasant balance of mathematical, physics and engineering principles, that make this book suitable for physicists, chemistry, electrical and mechanical engineers. --SENSOR REVIEW Of particular value is the fact that the authors go further than the description of the silicon sensor elements and also present solutions on how to interface these sensors to the surrounding world - electronically in the chapter on 'Electronic Interfacing' as well as physically in the chapter on 'Packaging'. To summarize, this textbook gives a comprehensive overview of mechanical microsensors which is especially well suited for students in courses on mechanical microsensors, but is also valuable for people in research and industry with an interest in this exciting and growing field. -MEASUREMENT SCIENCE AND TECHNOLOGY Author InformationTab Content 6Author Website:Countries AvailableAll regions |