Measuring Risk in Complex Stochastic Systems

Author:   J. Franke ,  Wolfgang Härdle ,  Gerhard Stahl
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 2000
Volume:   147
ISBN:  

9780387989969


Pages:   260
Publication Date:   15 June 2000
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $237.47 Quantity:  
Add to Cart

Share |

Measuring Risk in Complex Stochastic Systems


Add your own review!

Overview

This collection of articles by leading researchers will be of interest to people working in the area of mathematical finance.

Full Product Details

Author:   J. Franke ,  Wolfgang Härdle ,  Gerhard Stahl
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 2000
Volume:   147
Dimensions:   Width: 15.50cm , Height: 1.40cm , Length: 23.50cm
Weight:   0.860kg
ISBN:  

9780387989969


ISBN 10:   038798996
Pages:   260
Publication Date:   15 June 2000
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Allocation of Economic Capital in loan portfolios.- 1.1 Introduction.- 1.2 Credit portfolios.- 1.2.1 Ability to Pay Process.- 1.2.2 Loss distribution.- 1.3 Economic Capital.- 1.3.1 Capital allocation.- 1.4 Capital allocation based on Var/Covar.- 1.5 Allocation of marginal capital.- 1.6 Contributory capital based on coherent risk measures.- 1.6.1 Coherent risk measures.- 1.6.2 Capital Definition.- 1.6.3 Contribution to Shortfall-Risk.- 1.7 Comparision of the capital allocation methods.- 1.7.1 Analytic Risk Contribution.- 1.7.2 Simulation procedure.- 1.7.3 Comparison.- 1.7.4 Portfolio size.- 1.8 Summary.- 2 Estimating Volatility for Long Holding Periods.- 2.1 Introduction.- 2.2 Construction and Properties of the Estimator.- 2.2.1 Large Sample Properties.- 2.2.2 Small Sample Adjustments.- 2.3 Monte Carlo Illustrations.- 2.4 Applications.- 2.5 Conclusion.- 3 A Simple Approach to Country Risk.- 3.1 Introduction.- 3.2 A Structural No-Arbitrage Approach.- 3.2.1 Structural versus Reduced-Form Models.- 3.2.2 Applying a Structural Model to Sovereign Debt.- 3.2.3 No-Arbitrage vs Equilibrium Term Structure.- 3.2.4 Assumptions of the Model.- 3.2.5 The Arbitrage-Free Value of a Eurobond.- 3.2.6 Possible Applications.- 3.2.7 Determination of Parameters.- 3.3 Description of Data and Parameter Setting.- 3.3.1 DM-Eurobonds under Consideration.- 3.3.2 Equity Indices and Currencies.- 3.3.3 Default-Free Term Structure and Correlation.- 3.3.4 Calibration of Default-Mechanism.- 3.4 Pricing Capability.- 3.4.1 Test Methodology.- 3.4.2 Inputs for the Closed-Form Solution.- 3.4.3 Model versus Market Prices.- 3.5 Hedging.- 3.5.1 Static Part of Hedge.- 3.5.2 Dynamic Part of Hedge.- 3.5.3 Evaluation of the Hedging Strategy.- 3.6 Management of a Portfolio.- 3.6.1 Set Up of the Monte Carlo Approach.- 3.6.2 Optimality Condition.- 3.6.3 Application of the Optimality Condition.- 3.6.4 Modification of the Optimality Condition.- 3.7 Summary and Outlook.- 4 Predicting Bank Failures in Transition.- 4.1 Motivation.- 4.2 Improving Standard Models of Bank Failures.- 4.3 Czech banking sector.- 4.4 Data and the Results.- 4.5 Conclusions.- 5 Credit Scoring using Semiparametric Methods.- 5.1 Introduction.- 5.2 Data Description.- 5.3 Logistic Credit Scoring.- 5.4 Semiparametric Credit Scoring.- 5.5 Testing the Semiparametric Model.- 5.6 Misclassification and Performance Curves.- 6 On the (Ir) Relevancy of Value-at-Risk Regulation.- 6.1 Introduction.- 6.2 VaR and other Risk Measures.- 6.2.1 VaR and Other Risk Measures.- 6.2.2 VaR as a Side Constraint.- 6.3 Economic Motives for VaR Management.- 6.4 Policy Implications.- 6.5 Conclusion.- 7 Backtesting beyond VaR.- 7.1 Forecast tasks and VaR Models.- 7.2 Backtesting based on the expected shortfall.- 7.3 Backtesting in Action.- 7.4 Conclusions.- 8 Measuring Implied Volatility Surface Risk using PCA.- 8.1 Introduction.- 8.2 PCA of Implicit Volatility Dynamics.- 8.2.1 Data and Methodology.- 8.2.2 The results.- 8.3 Smile-consistent pricing models.- 8.3.1 Local Volatility Models.- 8.3.2 Implicit Volatility Models.- 8.3.3 The volatility models implementation.- 8.4 Measuring Implicit Volatility Risk using VaR.- 8.4.1 VaR: Origins and definition.- 8.4.2 VaR and Principal Components Analysis.- 9 Detection and estimation of changes in ARCH processes.- 9.1 Introduction.- 9.2 Testing for change-point in ARCH.- 9.2.1 Asymptotics under null hypothesis.- 9.2.2 Asymptotics under local alternatives.- 9.3 Change-point estimation.- 9.3.1 ARCH model.- 9.3.2 Extensions.- 10 Behaviour of Some Rank Statistics for Detecting Changes.- 10.1 Introduction.- 10.2 Limit Theorems.- 10.3 Simulations.- 10.4 Comments.- 10.5 Acknowledgements.- 11 A stable CAPM in the presence of heavy-tailed distributions.- 11.1 Introduction.- 11.2 Empirical evidence for the stable Paretian hypothesis.- 11.2.1 Empirical evidence.- 11.2.2 Univariate und multivariate ?-stable distributions.- 11.3 Stable CAPM and estimation for ?-coefficients.- 11.3.1 Stable CAPM.- 11.3.2 Estimation of the ?-coefficient in stable CAPM.- 11.4 Empirical analysis of bivariate symmetry test.- 11.4.1 Test for bivariate symmetry.- 11.4.2 Estimates for the ?-coefficient in stable CAPM.- 11.5 Summary.- 12 A Tailored Suit for Risk Management: Hyperbolic Model.- 12.1 Introduction.- 12.2 Advantages of the Proposed Risk Management Approach.- 12.3 Mathematical Definition of the P & L Distribution.- 12.4 Estimation of the P & L using the Hyperbolic Model.- 12.5 How well does the Approach Conform with Reality.- 12.6 Extension to Credit Risk.- 12.7 Application.- 13 Computational Resources for Extremes.- 13.1 Introduction.- 13.2 Computational Resources.- 13.2.1 XploRe.- 13.2.2 Xtremes.- 13.2.3 Extreme Value Analysis with XploRe and Xtremes.- 13.2.4 Differences between XploRe and Xtremes.- 13.3 Client/Server Architectures.- 13.3.1 Client/Server Architecture of XploRe.- 13.3.2 Xtremes CORBA Server.- 13.4 Conclusion.- 14 Confidence intervals for a tail index estimator.- 14.1 Confidence intervals for a tail index estimator.- 15 Extremes of alpha-ARCH Models.- 15.1 Introduction.- 15.2 The model and its properties.- 15.3 The tails of the stationary distribution.- 15.4 Extreme value results.- 15.4.1 Normalizing factors.- 15.4.2 Computation of the extremal index.- 15.5 Empirical study.- 15.5.1 Distribution of extremes.- 15.5.2 Tail behavior.- 15.5.3 The extremal index.- 15.6 Proofs.- 15.7 Conclusion.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List