|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Richard L. Wheeden (Rutgers University, New Brunswick, New Jersey, USA)Publisher: Taylor & Francis Ltd Imprint: Chapman & Hall/CRC Edition: 2nd edition Weight: 0.984kg ISBN: 9781032918938ISBN 10: 1032918934 Pages: 532 Publication Date: 14 October 2024 Audience: College/higher education , Tertiary & Higher Education Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsPreliminaries. Functions of Bounded Variation and the Riemann–Stieltjes Integral. Lebesgue Measure and Outer Measure. Lebesgue Measurable Functions. The Lebesgue Integral. Repeated Integration. Differentiation. Lp Classes. Approximations of the Identity and Maximal Functions. Abstract Integration. Outer Measure and Measure. A Few Facts from Harmonic Analysis. The Fourier Transform. Fractional Integration. Weak Derivatives and Poincaré–Sobolev Estimates.ReviewsAuthor InformationRichard L. Wheeden is Distinguished Professor of Mathematics at Rutgers University, New Brunswick, New Jersey, USA. His primary research interests lie in the fields of classical harmonic analysis and partial differential equations, and he is the author or coauthor of more than 100 research articles. After earning his Ph.D. from the University of Chicago, Illinois, USA (1965), he held an instructorship there (1965–1966) and a National Science Foundation (NSF) Postdoctoral Fellowship at the Institute for Advanced Study, Princeton, New Jersey, USA (1966–1967). Antoni Zygmund was Professor of Mathematics at the University of Chicago, Illinois, USA. He was earlier a professor at Mount Holyoke College, South Hadley, Massachusetts, USA, and the University of Pennsylvania, Philadelphia, USA. His years at the University of Chicago began in 1947, and in 1964, he was appointed Gustavus F. and Ann M. Swift Distinguished Service Professor there. He published extensively in many branches of analysis, including Fourier series, singular integrals, and differential equations. He is the author of the classical treatise Trigonometric Series and a coauthor (with S. Saks) of Analytic Functions. He was elected to the National Academy of Sciences in Washington, District of Columbia, USA (1961), as well as to a number of foreign academies. Tab Content 6Author Website:Countries AvailableAll regions |