Mathematik: Grundlagen für Wirtschaftswissenschaftler

Author:   Klaus D. Schmidt
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   2., überarb. Aufl. 2000
ISBN:  

9783540665212


Pages:   412
Publication Date:   12 November 1999
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $57.87 Quantity:  
Add to Cart

Share |

Mathematik: Grundlagen für Wirtschaftswissenschaftler


Add your own review!

Overview

Mathematische Modelle und Methoden sind in weiten Teilen der Wirtschaftswissenschaften unverzichtbar; dabei dient die Mathematik einerseits als Sprache zur Modellierung komplexer wirtschaftlicher Zusammenhänge, andererseits als Werkzeug zur Analyse wirtschaftswissenschaftlicher Modelle. Dieses Buch behandelt die wichtigsten Aspekte der Linearen Algebra und der Analysis. Schwerpunkte sind lineare Gleichungssysteme, lineare Differenzen- und Differentialgleichungen sowie lineare und nichtlineare Optimierungsprobleme unter Nebenbedingungen. Die dargestellten Konzepte werden anhand zahlreicher Beispiele verdeutlicht.

Full Product Details

Author:   Klaus D. Schmidt
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   2., überarb. Aufl. 2000
Dimensions:   Width: 15.50cm , Height: 2.20cm , Length: 23.50cm
Weight:   0.652kg
ISBN:  

9783540665212


ISBN 10:   3540665218
Pages:   412
Publication Date:   12 November 1999
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.
Language:   German

Table of Contents

Formale Logik.- 1.1 Die Axiome von Peano.- 1.2 Aussagenlogik.- 1.3 Quantoren.- 1.4 Mathematische Schlußweisen.- 2 Mengenlehre.- 2.1 Mengen und ihre Elemente.- 2.2 Mengenalgebra.- 2.3 Relationen.- 2.4 Abbildungen.- 3 Zahlen.- 3.1 Die natürlichen Zahlen.- 3.2 Die reellen Zahlen.- 3.3 Die ganzen Zahlen und die rationalen Zahlen.- 3.4 Die komplexen Zahlen.- 3.5 Algebraische Strukturen.- 4 Vektoren.- 4.1 Vektoralgebra.- 4.2 Vektorräume.- 4.3 Vektorräume mit Norm.- 4.4 Vektorräume mit Skalarprodukt.- 5 Matrizen.- 5.1 Matrixalgebra.- 5.2 Matrizen als lineare Abbildungen.- 5.3 Quadratische Matrizen.- 5.4 Spur und Determinante.- 5.5 Reguläre Matrizen.- 5.6 Spezielle quadratische Matrizen.- 6 Lineare Gleichungssysteme.- 6.1 Das Austauschverfahren.- 6.2 Das Austauschverfahren als Algorithmus.- 6.3 Matrizengleichungen.- 6.4 Bestimmung von Kern und Rang.- 6.5 Bestimmung der Inversen einer regulären Matrix.- 7 Lineare Optimierung.- 7.1 Beispiele für lineare Optimierungsprobleme.- 7.2 Das Minimumproblem in Normalform.- 7.3 Basisdarstellungen und Basislösungen.- 7.4 Das Simplexkriterium.- 7.5 Das Simplexverfahren.- 7.6 Bestimmung einer zulässigen Basislösung.- 7.7 Algorithmische Lösung der Beispiele.- 8 Lineare Differenzengleichungen.- 8.1 Folgen.- 8.2 Lineare Differenzengleichungen 1. Ordnung.- 8.3 Lineare Differenzengleichungen 2. Ordnung.- 8.4 Der Differenzenoperator.- 9 Konvergenz von Folgen, Reihen und Produkten.- 9.1 Konvergenz von Folgen.- 9.2 Konvergenz von Reihen.- 9.3 Konvergenz von Produkten.- 10 Stetige Funktionen in einer Variablen.- 10.1 Stetigkeit.- 10.2 Stetige Funktionen.- 10.3 Spezielle stetige Funktionen.- 11 Differentialrechnung in einer Variablen.- 11.1 Differenzierbarkeit.- 11.2 Einmal differenzierbare Funktionen.- 11.3 Zweimal differenzierbareFunktionen.- 11.4 Ableitungen höherer Ordnung.- 12 Lineare Differentialgleichungen.- 12.1 Das unbestimmte Integral.- 12.2 Lineare Differentialgleichungen 1. Ordnung.- 12.3 Lineare Differentialgleichungen 2. Ordnung.- 12.4 Der Differentialoperator.- 13 Integralrechnung.- 13.1 Das bestimmte Integral.- 13.2 Uneigentliche Integrale.- 14 Differentialrechnung in mehreren Variablen.- 14.1 Konvergenz im Euklidischen Raum.- 14.2 Reelle Funktionen in mehreren Variablen.- 14.3 Stetigkeit.- 14.4 Partielle Differenzierbarkeit.- 14.5 Einmal partiell differenzierbare Funktionen.- 14.6 Zweimal partiell differenzierbare Funktionen.- 14.7 Optimierung unter Nebenbedingungen.- Literatur.- Stichwortverzeichnis.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List