|
|
|||
|
||||
OverviewDas vorliegende Buch über Mathematik für Wirtschaftswissenschaftler basiert auf langjährigen Erfahrungen mit dem gleichnamigen Kurs der Fernuniversität Hagen. Die Themenauswahl ist so getroffen, daß sie für die Wirtschafts-, Sozial- und Ingenieurwissenschaften die notwendigen Kenntnisse liefert. Behandelt werden in den einzelnen Kapiteln des Buches die Themen Vektoren, Geometrie im Rn, Matrizen, lineare Gleichungs- und Ungleichungssysteme. Jedes Kapitel ist grundsätzlich in zwei Teile unterteilt, im ersten Teil werden die angesprochenen Themenkreise durch motivierende Beispiele eingeführt, im zweiten Teil mathematisch behandelt. Die Darstellung der Inhalte richtet sich insbesondere an die Zielgruppe der Selbststudierenden. Das bedeutet, daß jeder, der die Lineare Algebra als Grundlage für ein weiteres Studium braucht, durch dieses Buch ein Werk in die Hand bekommt, das es ihm ermöglicht, ohne fremde Hilfe, ohne Vorlesungen oder Vorträge zu besuchen, im Selbststudium die notwendigen Kenntnisse zu erwerben. Die didaktischen Erfahrungen, die an der Fernuniversität in jahrelanger Arbeit gesammelt wurden, werden in diesem Buch einen breiten Leserkreis zugänglich gemacht. Full Product DetailsAuthor: Tomas Gal , Hermann-Josef Kruse , Bernhard Vogeler , Hartmut WolfPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 3. Auflage 1991 Weight: 0.689kg ISBN: 9783540537359ISBN 10: 354053735 Pages: 298 Publication Date: 02 April 1991 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Language: German Table of Contents0.1 Bedeutung der Mathematik für Wirtschaftswissenschaftler.- 0.2 Didaktische Aufbereitung und Inhaltsübersicht.- 0.3 Vorkenntnisse.- 1 Vektorrechnung.- 1.1 Grundbegriffe.- 1.2 Linearkombinationen, lineare Abhängigkeit und Unabhängigkeit.- 1.3 Lineare Teilräume.- 1.4 Basis, Dimension und Basistransformation.- 2 Geometrie im Rn.- 2.1 Punktmengen des Rn.- 2.2 Eigenschaften von Punkten und Punktmengen.- 3 Matrizenrechnung.- 3.1 Elementare Matrizenoperationen.- 3.2 Die inverse Matrix.- 3.3 Der Rang einer Matrix.- 3.4 Determinanten.- 4 Lineare Gleichungssysteme.- 4.1 Geometrische Interpretation und Begriff eines linearen Gleichungssystems.- 4.2 Die Eliminationsmethode.- 4.3 Zusammenhang mit der linearen Abhängigkeit von Vektoren und dem Rang einer Matrix.- 4.4 Lösbarkeitskriterien und die Inverse.- 4.5 Basislösung und Basistausch.- 4.6 Äquivalente Transformationen.- 4.7 Eigenwerte und Eigenvektoren von Matrizen.- 4.8 Quadratische Formen.- 5 Lineare Ungleichungssysteme und konvexe Polyeder.- 5.1 Lineare Ungleichungssysteme.- 5.2 Konvexe Polyeder.- 5.3 Kegel und konvexe Polyederkegel.- Lösungen zu den Übungsaufgaben.- Algorithmen mit Flußdiagrammen.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||