|
|
|||
|
||||
OverviewAimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analysed. Part II is devoted to a self contained proof of the existence of weak (or strong) solutionsto the incompressible Navier-Stokes equations. Part III deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analysed, and finally rotating Navier-Stokesequations between two plates are studied, both in the case of periodic horizontal coordinates and those in R. In Part IV the stability of Ekman boundary layers, and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open. Full Product DetailsAuthor: Jean-Yves Chemin , Benoit Desjardins , Isabelle Gallagher , Emmanuel GrenierPublisher: Oxford University Press Imprint: Oxford University Press ISBN: 9786610904075ISBN 10: 6610904073 Pages: 264 Publication Date: 13 April 2006 Audience: General/trade , General Format: Electronic book text Publisher's Status: Active Availability: Out of stock The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||