Mathematical Foundations of Time Series Analysis: A Concise Introduction

Author:   Jan Beran
Publisher:   Springer Nature Switzerland AG
Edition:   Softcover reprint of the original 1st ed. 2017
ISBN:  

9783030089757


Pages:   307
Publication Date:   11 December 2018
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $448.77 Quantity:  
Add to Cart

Share |

Mathematical Foundations of Time Series Analysis: A Concise Introduction


Add your own review!

Overview

This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.

Full Product Details

Author:   Jan Beran
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   Softcover reprint of the original 1st ed. 2017
Weight:   0.492kg
ISBN:  

9783030089757


ISBN 10:   3030089754
Pages:   307
Publication Date:   11 December 2018
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 What is a time series? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Time series versus iid data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Typical assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Fundamental properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Ergodic property with a constant limit . . . . . . . . . . . . . . . . . . . 5 2.1.2 Strict Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Weak Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.4 Weak stationarity and Hilbert spaces . . . . . . . . . . . . . . . . . . . . 9 2.1.5 Ergodic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.6 Sufficient conditions for the a.s. ergodic property with a constant limit. . . . . . . . . . . 26 2.1.7 Sufficient conditions for the L2-ergodic property with a constant limit . .. . . . .. . . 27 2.2 Specific assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.1 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 Linear processes in L2(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Linear processes with E(X2t ) = ∞ . . . . . . . . . . . . . . . . . . . . . . 34 2.2.4 Multivariate linear processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.5 Invertibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.6 Restrictions on the dependence structure . . . . . . . . . . . . . . . . . 49 3 Defining probability measures for time series . . . . . . . . . . . . . . . . . . . . . . 55 3.1 Finite dimensional distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Transformations and equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 Conditions on the expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Conditions on the autocovariance function . . . . . . . . . . . . . . . . . . . . . . 58 3.4.1 Positive semidefinite functions . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.2 Spectral distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.3 Calculation and properties of F and f . . . . . . . . . . . . . . . . . 4 Spectral representation of univariate time series . . . . . . . . . . . . . . . . . . . 81 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 Harmonic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Extension to general processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Stochastic integrals with respect to Z . . . . . . . . . . . . . . . . . . . . 84 4.3.2 Existence and definition of Z . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3.3 Interpretation of the spectral representation . . . . . . . . . . . . . . 97 4.4 Further properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.1 Relationship between ReZ and ImZ . . . . . . . . . . . . . . . . . . . . 98 4.4.2 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.3 Overtones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.4 Why are frequencies restricted to the range [-π,π]? . . . . . . . 100 4.5 Linear filters and the spectral representation . . . . . . . . . . . . . . . . . . . . 103 4.5.1 Effect on the spectral representation . . . . . . . . . . . . . . . . . . . . . 103 4.5.2 Elimination of Frequency Bands . . . . . . . . . . . . . . . . . . . . . . . 107 5 Spectral representation of real valued vector time series . . . . . . . . . . . . 109 5.1 Cross-spectrum and spectral representation . . . . . . . . . . . . . . . . . . . . . 109 5.2 Coherence and phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Univariate ARMA processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.2 Stationary solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.3 Causal stationary solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.4 Causal invertible stationary solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Autocovariances of ARMA processes . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.5.1 Calculation by integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.5.2 Calculation using the autocovariance generating function . . . 135 6.5.3 Calculation using the Wold representation . . . . . . . . . . . . . . . 138 6.5.4 Recursive calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.5.5 Asymptotic decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.6 Integrated, seasonal and fractional ARMA and ARIMA processes . . 147 6.6.1 Integrated processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.6.2 Seasonal ARMA processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.6.3 Fractional ARIMA processes . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.7 Unit roots, spurious correlation, cointegration . . . . . . . . . . . . . . . . . . . 159 7 Generalized autoregressive processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.1 Definition of generalized autoregressive processes . . . . . . . . . . . . . . . 163 7.2 Stationary solution of generalized autoregressive equations . . . . . . . . 164 7.3 Definition of VARMA processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.4 Stationary solution of VARMA equations . . . . . . . . . . . . . . . . . . . . . . 169 7.5 Definition of GARCH processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.6 Stationary solution of GARCH equations . . . . . . . . . . . . . . . . . . . . . . . 172 7.7 Definition of ARCH(∞) processes . . . . . . . . . . . . . . . . . . . . . 7.8 Stationary solution of ARCH(∞) equations . . . . . . . . . . . . . . . . . . . . . 177 8 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8.1 Best linear prediction given an infinite past . . . . . . . . . . . . . . . . . . . . . 181 8.2 Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.3 Construction of the Wold decomposition from f . . . . . . . . . . . . . . . . . 187 8.4 Best linear prediction given a finite past . . . . . . . . . . . . . . . . . . . . . . . . 190 9 Inference for  µ, γ and F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 9.1 Location estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 9.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 9.3 Nonparametric estimation of γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 9.4 Nonparametric estimation of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 10 Parametric estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.1 Gaussian and quasi maximum likelihood estimation . . . . . . . . . . . . . . 227 10.2 Whittle approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 10.3 Autoregressive approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 10.4 Model choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Reviews

“‘This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. … It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.’ … The book can be recommended to all readers, who are interested in this field.” (Ludwig Paditz, zbMath 1414.62001, 2019) “This book is a rigorous, mathematically clear and self-contained and quite complete text on time series analysis, suitable both for graduate courses and as a reference book for researchers and users of stochastic temporal models.” (Nazaré Mendes Lopes, Mathematical Reviews, December, 2018) “Beran (Univ. of Konstanz, Germany) presents the mathematical foundations of time series analysis at a level suitable for advanced graduate students and researchers in statistics. The presentation is extremely concise … . the book gives definitions, theorems, and proofs, along with a few exercises and solutions. … it may be useful to graduate students and researchers as a reference.” (B. Borchers, Choice, Vol. 56 (03), November, 2018)​


This book is a rigorous, mathematically clear and self-contained and quite complete text on time series analysis, suitable both for graduate courses and as a reference book for researchers and users of stochastic temporal models. (Nazar Mendes Lopes, Mathematical Reviews, December, 2018) Beran (Univ. of Konstanz, Germany) presents the mathematical foundations of time series analysis at a level suitable for advanced graduate students and researchers in statistics. The presentation is extremely concise ... . the book gives definitions, theorems, and proofs, along with a few exercises and solutions. ... it may be useful to graduate students and researchers as a reference. (B. Borchers, Choice, Vol. 56 (03), November, 2018)


Author Information

Jan Beran is Professor of Statistics at the Department of Mathematics and Statistics at the University of Konstanz, Germany. After completing his Ph.D. in mathematics at the ETH Zurich, Switzerland, he worked at several universities in the USA and at the University of Zurich in Switzerland. He has a broad range of interests, from long-memory processes and asymptotic theory to applications in finance, biology, and musicology.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List