|
![]() |
|||
|
||||
OverviewOver the past five years, through a continually increasing wave of activity in the physics community, supergravity has come to be regarded as one of the most promising ways of unifying gravity with other particle interaction as a finite gauge theory to explain the spectrum of elementary particles. Concurrently im portant mathematical works on the arena of supergravity has taken place, starting with Kostant's theory of graded manifolds and continuing with Batchelor's work linking this with the superspace formalism. There remains, however, a gap between the mathematical and physical approaches expressed by such unanswered questions as, does there exist a superspace having all the properties that physicists require of it? Does it make sense to perform path integral in such a space? It is hoped that these proceedings will begin a dialogue between mathematicians and physicists on such questions as the plan of renormalisation in supergravity. The contributors to the proceedings consist both of mathe maticians and relativists who bring their experience in differen tial geometry, classical gravitation and algebra and also quantum field theorists specialized in supersymmetry and supergravity. One of the most important problems associated with super symmetry is its relationship to the elementary particle spectrum. Full Product DetailsAuthor: H.J. Seifert , C.J.S. Clarke , A. RosenblumPublisher: Springer Imprint: Kluwer Academic Publishers Edition: 1984 ed. Volume: 132 Dimensions: Width: 15.50cm , Height: 1.40cm , Length: 23.50cm Weight: 1.110kg ISBN: 9789027718051ISBN 10: 9027718059 Pages: 214 Publication Date: 31 July 1984 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsNon-linear Realization of Supersymmetry.- 1. Introduction.- 2. The Akulov-Volkov field.- 3. Superfields.- 4. Standard fields.- 5. N > 1/N = 1.- 6. N = 1 supergravity.- References.- Fields, Fibre Bundles and Gauge Groups.- 1. Manifolds.- 2. Fibre bundles.- 3. Gauge Groups.- 4. Space-Time.- Path Integration on Manifolds.- 1. Introduction.- 2. Gaussian measures, cylinder set measures, and the Feynman-Kac formula.- 3. Feynman path integrals.- 4. Path integration on Riemannian manifolds.- 5. Gauge invariant equations; diffusion and differential forms.- Acknowledgements, References.- Graded Manifolds and Supermanifolds.- Preface and cautionary note.- 0. Standard notation.- 1. The category GM.- 2. The geometric approach.- 3. Comparisons.- 4. Lie supergroups.- Table: “All I know about supermanifolds”.- References.- Aspects of the Geometrical Approach to Supermanifolds.- 1. Abstract.- 2. Building superspace over an arbitrary spacetime.- 3. Super Lie groups.- 4. Compact supermanifolds with non-Abelian fundamental group.- 5. Developments and applications.- References.- Integration on Supermanifolds.- 1. Introduction.- 2. Standard integration theory.- 3. Integration over odd variables.- 4. Superforms.- 5. Integration on Er,s.- 6. Integration on supermanifolds.- References.- Remarks on Batchelor’s Theorem.- Classical Supergravity.- 1. Definition of classical supergravity.- 2. Dynamical analysis of classical field theories.- 3. Formal dynamical analysis of classical supergravity.- 4. The exterior algebra formulation of classical supergravity.- 5. Does classical supergravity make sense?.- Appendix: Notations and conventions.- References.- List of participants.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |