|
![]() |
|||
|
||||
OverviewWith contributions from noted experts from Europe and North America, Mass Spectrometry Instrumentation, Interpretation, and Applications serves as a forum to introduce students to the whole world of mass spectrometry and to the many different perspectives that each scientific field brings to its use. The book emphasizes the use of this important analytical technique in many different fields, including applications for organic and inorganic chemistry, forensic science, biotechnology, and many other areas. After describing the history of mass spectrometry, the book moves on to discuss instrumentation, theory, and basic applications. Full Product DetailsAuthor: Rolf Ekman , Jerzy Silberring , Ann M. Westman-Brinkmalm , Agnieszka KrajPublisher: John Wiley & Sons Inc Imprint: John Wiley & Sons Inc Dimensions: Width: 16.40cm , Height: 2.30cm , Length: 23.90cm Weight: 0.680kg ISBN: 9780471713951ISBN 10: 0471713953 Pages: 416 Publication Date: 23 April 2009 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsForeword xiii Contributors xv Part I Instrumentation 1 1 Definitions and Explanations 3 Ann Westman-Brinkmalm and Gunnar Brinkmalm References 13 2 A Mass Spectrometer’s Building Blocks 15 Ann Westman-Brinkmalm and Gunnar Brinkmalm 2.1. Ion Sources 15 2.1.1. Gas Discharge 16 2.1.2. Thermal Ionization 16 2.1.3. Spark Source 19 2.1.4. Glow Discharge 20 2.1.5. Inductively Coupled Plasma 21 2.1.6. Electron Ionization 23 2.1.7. Chemical Ionization 24 2.1.8. Atmospheric Pressure Chemical Ionization 24 2.1.9. Photoionization 25 2.1.10. Multiphoton Ionization 25 2.1.11. Atmospheric Pressure Photoionization 26 2.1.12. Field Ionization 26 2.1.13. Field Desorption 27 2.1.14. Thermospray Ionization 27 2.1.15. Electrospray Ionization 27 2.1.16. Desorption Electrospray Ionization 29 2.1.17. Direct Analysis in Real Time 30 2.1.18. Secondary Ion Mass Spectrometry 31 2.1.19. Fast Atom Bombardment 33 2.1.20. Plasma Desorption 34 2.1.21. Laser Desorption/Ionization 34 2.1.22. Matrix-Assisted Laser Desorption/Ionization 35 2.1.23. Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization 37 2.2. Mass Analyzers 38 2.2.1. Time-of-Flight 40 2.2.2. Magnetic/Electric Sector 45 2.2.3. Quadrupole Mass Filter 49 2.2.4. Quadrupole Ion Trap 51 2.2.5. Orbitrap 55 2.2.6. Fourier Transform Ion Cyclotron Resonance 58 2.2.7. Accelerator Mass Spectrometry 62 2.3. Detectors 65 2.3.1. Photoplate Detector 65 2.3.2. Faraday Detector 67 2.3.3. Electron Multipliers 67 2.3.4. Focal Plane Detector 69 2.3.5. Scintillation Detector 69 2.3.6. Cryogenic Detector 70 2.3.7. Solid-State Detector 70 2.3.8. Image Current Detection 70 References 71 3 Tandem Mass Spectrometry 89 Ann Westman-Brinkmalm and Gunnar Brinkmalm 3.1. Tandem MS Analyzer Combinations 91 3.1.1. Tandem-in-Space 91 3.1.2. Tandem-in-Time 95 3.1.3. Other Tandem MS Configurations 97 3.2. Ion Activation Methods 97 3.2.1. In-Source Decay 97 3.2.2. Post-Source Decay 98 3.2.3. Collision Induced/Activated Dissociation 98 3.2.4. Photodissociation 100 3.2.5. Blackbody Infrared Radiative Dissociation 100 3.2.6. Electron Capture Dissociation 101 3.2.7. Electron Transfer Dissociation 101 3.2.8. Surface-Induced Dissociation 101 References 102 4 Separation Methods 105 Ann Westman-Brinkmalm, Jerzy Silberring, and Gunnar Brinkmalm 4.1. Chromatography 106 4.1.1. Gas Chromatography 106 4.1.2. Liquid Chromatography 107 4.1.3. Supercritical Fluid Chromatography 109 4.2. Electric-Field Driven Separations 110 4.2.1. Ion Mobility 110 4.2.2. Electrophoresis 111 References 113 Part II Interpretation 117 5 Introduction to Mass Spectra Interpretation: Organic Chemistry 119 Albert T. Lebedev 5.1. Basic Concepts 119 5.2. Inlet Systems 121 5.2.1. Direct Inlet 121 5.2.2. Chromatography-Mass Spectrometry 121 5.3. Physical Bases of Mass Spectrometry 128 5.3.1. Electron Ionization 129 5.3.2. Basics of Fragmentation Processes in Mass Spectrometry 130 5.3.3. Metastable Ions 135 5.4. Theoretical Rules and Approaches to Interpret Mass Spectra 137 5.4.1. Stability of Charged and Neutral Particles 137 5.4.2. The Concept of Charge and Unpaired Electron Localization 148 5.4.3. Charge Remote Fragmentation 151 5.5. Practical Approaches to Interpret Mass Spectra 152 5.5.1. Molecular Ion 152 5.5.2. High Resolution Mass Spectrometry 155 5.5.3. Determination of the Elemental Composition of Ions on the Basis of Isotopic Peaks 158 5.5.4. The Nitrogen Rule 164 5.5.5. Establishing the 13 C Isotope Content in Natural Samples 166 5.5.6. Calculation of the Isotopic Purity of Samples 166 5.5.7. Fragment Ions 168 5.5.8. Mass Spectral Libraries 173 5.5.9. Additional Mass Spectral Information 173 5.5.10. Fragmentation Scheme 175 References 177 6 Sequencing of Peptides and Proteins 179 Marek Noga, Tomasz Dylag, and Jerzy Silberring 6.1. Basic Concepts 179 6.2. Tandem Mass Spectrometry of Peptides and Proteins 181 6.3. Peptide Fragmentation Nomenclature 183 6.3.1. Roepstorff’s Nomenclature 183 6.3.2. Biemann’s Nomenclature 185 6.3.3. Cyclic Peptides 187 6.4. Technical Aspects and Fragmentation Rules 188 6.5. Why Peptide Sequencing? 190 6.6. De Novo Sequencing 192 6.6.1. Data Acquisition 193 6.6.2. Sequencing Procedure Examples 194 6.6.3. Tips and Tricks 205 6.7. Peptide Derivatization Prior to Fragmentation 207 6.7.1. Simplification of Fragmentation Patterns 208 6.7.2. Stable Isotopes Labeling 209 Acknowledgments 210 References 210 Online Tutorials 210 7 Optimizing Sensitivity and Specificity in Mass Spectrometric Proteome Analysis 211 Jan Eriksson and David Fenyö 7.1. Quantitation 212 7.2. Peptide and Protein Identification 213 7.3. Success Rate and Relative Dynamic Range 218 7.4. Summary 220 References 220 Part III Applications 223 8 Doping Control 225 Graham Trout References 233 9 Oceanography 235 R. Timothy Short, Robert H. Byrne, David Hollander, Johan Schijf, Strawn K. Toler, and Edward S. VanVleet References 241 10 “omics” Applications 243 Simone König 10.1. Introduction 243 10.2. Genomics and Transcriptomics 246 10.3. Proteomics 248 10.4. Metabolomics 251 11 Space Sciences 253 Robert Sheldon 11.1. Introduction 253 11.2. Origins 254 11.3. Dynamics 256 11.4. The Space MS Paradox 257 11.5. A Brief History of Space MS 259 11.5.1. Beginnings 259 11.5.2. Linear TOF-MS 260 11.5.3. Isochronous TOF-MS 262 11.6. GENESIS and the Future 264 References 264 12 Bioterrorism 267 Vito G. DelVecchio and Cesar V. Mujer 12.1. What is Bioterrorism? 267 12.2. Some Historical Accounts of Bioterrorism 267 12.3. Geneva Protocol of 1925 and Biological Weapons Convention of 1972 268 12.4. Categories of Biothreat Agents 268 12.5. Challenges 269 12.6. MS Identification of Biomarker Proteins 270 12.7. Development of New Therapeutics and Vaccines Using Immunoproteomics 271 References 272 13 Imaging of Small Molecules 275 Małgorzata Iwona Szynkowska 13.1. SIMS Imaging 277 13.2. Biological Applications (Cells, Tissues, and Pharmaceuticals) 278 13.3. Catalysis 280 13.4. Forensics 281 13.5. Semiconductors 282 13.6. The Future 283 References 285 14 Utilization of Mass Spectrometry In Clinical Chemistry 287 Donald H. Chace 14.1. Introduction 287 14.2. Where are Mass Spectrometers Utilized in Clinical Applications? 288 14.3. Most Common Analytes Detected by Mass Spectrometers 288 14.4. Multianalyte Detection of Clinical Biomarkers, The Real Success Story 289 14.5. Quantitative Profiling 291 14.6. A Clinical Example of the Use of Mass Spectrometry 292 14.7. Demonstrations of Concepts of Quantification in Clinical Chemistry 294 14.7.1. Tandem Mass Spectrometry and Sorting (Pocket Change) 294 14.7.2. Isotope Dilution and Quantification (the Jelly Bean Experiment) 295 15 Polymers 299 Maurizio S. Montaudo 15.1. Introduction 299 15.2. Instrumentation, Sample Preparation, and Matrices 300 15.3. Analysis of Ultrapure Polymer Samples 301 15.4. Analysis of Polymer Samples in which all Chains Possess the Same Backbone 301 15.5. Analysis of Polymer Mixtures with Different Backbones 303 15.6. Determination of Average Molar Masses 303 References 306 16 Forensic Sciences 309 Maria Kala 16.1. Introduction 309 16.2. Materials Examined and Goals of Analysis 311 16.3. Sample Preparation 312 16.4. Systematic Toxicological Analysis 312 16.4.1. GC-MS Procedures 315 16.4.2. LC-MS Procedures 315 16.5. Quantitative Analysis 317 16.6. Identification of Arsons 319 References 319 17 New Approaches to Neurochemistry 321 Jonas Bergquist, Jerzy Silberring, and Rolf Ekman 17.1. Introduction 321 17.2. Why is there so Little Research in this Area? 322 17.3. Proteomics and Neurochemistry 323 17.3.1. The Synapse 324 17.3.2. Learning and Memory 324 17.3.3. The Brain and the Immune System 325 17.3.4. Stress and Anxiety 327 17.3.5. Psychiatric Diseases and Disorders 329 17.3.6. Chronic Fatigue Syndrome 329 17.3.7. Addiction 330 17.3.8. Pain 331 17.3.9. Neurodegenerative Diseases 331 17.4. Conclusions 333 Acknowledgments 333 References 334 Part IV Appendix 337 Index 353ReviewsThe book is particularly designed for graduate students, with the assumption being made that most of them will not become mass spectrometry specialists. Instead, it focuses on how they can use the technique to support and advance research across a broad range of disciplines. (Chemistry Journals, 11 April 2011) It was my great pleasure to read this clearly written and well organized mass spectrometry (MS) book. In view, it can serve as an excellent textbook for both undergraduate and graduate students who major in analytical, biological, forensic, or environmental chemistry, as well as a valuable resource to those researchers who are interested in the MS-based chemical analysis. (J Am Soc Mass Spectrom, 2011) The book is particularly designed for graduate students, with the assumption being made that most of them will not become mass spectrometry specialists. Instead, it focuses on how they can use the technique to support and advance research across a broad range of disciplines. (Chemistry Journals, 11 April 2011) Author InformationRolf Ekman, PhD, is a Professor of Neurochemistry at University of Gothenburg in Sweden. JERZY SILBERRING, PhD, is the Head of the Department of Neurobiochemistry in the Department of Chemistry and the former deputy head of the Regional Laboratory of Physicochemical Analyses at Jagiellonian University in Krakow, Poland. Ann M. Westman-Brinkmalm, PhD, is a Junior Research Fellow at the Sahlgrenska Academy at University of Gothenburg in Sweden. Agnieszka Kraj, PhD, is an Assistant Professor in the Department of Neurobiochemistry, Faculty of Chemistry at Jagiellonian University in Krakow, Poland. Tab Content 6Author Website:Countries AvailableAll regions |