Differential Equations: A Maple™ Supplement

Author:   Robert P. Gilbert (University of Delaware, Newark, USA) ,  George C. Hsiao ,  Robert J. Ronkese
Publisher:   Taylor & Francis Ltd
Edition:   2nd edition
ISBN:  

9781032021799


Pages:   235
Publication Date:   29 June 2021
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $305.00 Quantity:  
Add to Cart

Share |

Differential Equations: A Maple™ Supplement


Overview

Full Product Details

Author:   Robert P. Gilbert (University of Delaware, Newark, USA) ,  George C. Hsiao ,  Robert J. Ronkese
Publisher:   Taylor & Francis Ltd
Imprint:   Chapman & Hall/CRC
Edition:   2nd edition
Weight:   0.471kg
ISBN:  

9781032021799


ISBN 10:   1032021799
Pages:   235
Publication Date:   29 June 2021
Audience:   College/higher education ,  Tertiary & Higher Education
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Preface. 1. Introduction to the Maple DEtools. 1.1. Analytical Solutions and their Plotting. 1.2. Direction Fields and Integral Curves. 1.3. Computer Lab. 1.4. Supplementary Maple Programs. 2. First-order Differential Equations. 2.1. Linear differential equations. 2.2. Project: Mixing problems. 2.3. Separable differential equations. 2.4. Exact Questions. 3. Numerical Methods for First Order Equations. 3.1. Picard’s Iteration Method and Semi-batch Reactor. 3.2. An Existence and Uniqueness Theorem. 3.3. Picard Iteration Method. 3.4. Computer Lab. 3.5. Numerical Procedures and Fermentation Kinetics. 3.6. The Euler Method. 3.7. Higher-Order Methods. 3.8. Maple Procedures. 3.9. Computer Lab. 3.10. Supplementary Maple Programs. 4. Differential Equations with Constant Coefficients. 4.1. Second order equations with constant coefficients. 4.2. Variation of Parameters. 4.3. The Method of Undetermined Coefficients. 4.4. Higher order, homogeneous equations. 4.5. Nonhomogeneous Linear Equations. 5. Applications of Second Order Linear Equations. 5.1. Simple Harmonic Motion. 5.2. General Solutions. 5.3. Method of Undetermined Coefficients. 5.4. Additional Useful Commands. 5.5. Computer Lab. 5.6. Supplementary Maple Programs. 5.7. Particular Solutions. 5.8. Computer Lab. 5.9. Supplementary Maple Programs. 6. Two-Point Boundary Value Problems, Catalytic Reactors and Boundary-Layer Phenomena. 6.1. Analytical Solutions. 6.2. Finite-Difference Methods. 6.3. Computer Lab. 6.4. Supplementary Maple Programs. 7. Eigenvalue Problems. 7.1. Sturm-Liouville Problems. 7.2 Numerical Approximations. 7.3. The Newton-Raphson Method. 7.4. Computer Lab. 7.5. Supplementary Mapple Programs. 8. Power Series Methods for Solving Differential Equations. 8.1. Nonlinear Differential Equations. 8.2. Regular-Singular Points. 8.3. Programs for finding solutions. 8.4. Projects. 9. Nonlinear Autonomous Systems. 9.1. The Taylor Series Method. 9.2. The Phase Plane. 9.3. Linear Systems. 9.4. Useful Maple Commands. 9.5. Computer Lab. 9.6. Supplementary Maple Programs. 10. Integral Transforms. 10.1 The Laplace Transform of Elementary Functions. 10.2. Solving Differential Equations with the Laplace Transform. 10.3. Fourier Transforms. 11. Partial Differential Equations. 11.1. Elementary Methods. 11.2. The First Order Partial Differential Equation. 11.3. The Heat Equation. 11.4. The Vibrating String. 11.5 The Laplace Equation. 12. Transmutations. 12.1. The method of ascent. 12.2. Orthogonal systems of functions. 12.3. Acoustic propagation. Bibliography. Index.

Reviews

Author Information

Robert P. Gilbert holds a Ph.D. in mathematics from Carnegie Mellon University. He and Jerry Hile originated the method of generalized hyperanalytic function theory. Dr. Gilbert was professor at Indiana University, Bloomington and later became the Unidel Foundation Chair of Mathematics at the University of Delaware. He has published over 300 articles in professional journals and conference proceedings. He is the Founding Editor of two mathematics journals Complex Variables and Applicable Analysis. He is a three-time Awardee of the Humboldt-Preis, and. received a British Research Council award to do research at Oxford University. He is also the recipient of a Doctor Honoris Causa from the I. Vekua Institute of Applied Mathematics at Tbilisi State University. George C. Hsiao holds a doctorate degree in Mathematics from Carnegie Mellon University. Dr. Hsiao is the Carl J. Rees Professor of Mathematics Emeritus at the University of Delaware from which he retired after 43 years on the faculty of the Department of Mathematical Sciences. Dr. Hsiao was also the recipient of the Francis Alison Faculty Award, the University of Delaware’s most prestigious faculty honor, which was bestowed on him in recognition of his scholarship, professional achievement and dedication. His primary research interests are integral equations and partial differential equations with their applications in mathematical physics and continuum mechanics. He is the author or co-author of more than 200 publications in books and journals. Dr. Hsiao is world-renowned for his expertise in Boundary Element Method and has given invited lectures all over the world. Robert J. Ronkese holds a PhD in applied mathematics from the University of Delaware. He is a professor of mathematics at the US Merchant Marine Academy on Long Island. As an undergraduate, he was an exchange student at the Swiss Federal Institute of Technology (ETH) in Zurich. He has held visiting positions at the US Military Academy at West Point and at the University of Central Florida in Orlando

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List