Magnesium and Its Alloys as Implant Materials: Corrosion, Mechanical and Biological Performances

Author:   Mirco Peron ,  Filippo Berto ,  Jan Torgersen
Publisher:   Taylor & Francis Ltd
ISBN:  

9780367429454


Pages:   180
Publication Date:   07 April 2020
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $315.00 Quantity:  
Add to Cart

Share |

Magnesium and Its Alloys as Implant Materials: Corrosion, Mechanical and Biological Performances


Add your own review!

Overview

Despite their tremendous potential, Mg and its alloys are not yet used in biomedical applications. This book aims to provide scientific insights into the challenges of the materials, and give an overview of the research regarding their mechanical properties, corrosion behaviour and biological performances. The authors intend to put the reader into the position to accurate discern the proper Mg-based material for his/her applications and to choose the proper improvement strategy to his/her cause. To this aim, the manuscript is structured as follow: in Section 2, the main challenges hampering the use of magnesium in biomedical applications and the common improvement strategies are listed. In Section 3, the most investigated Mg alloys are reported in separate sub-sections, detailing their mechanical properties, corrosion behaviour and biotoxicity. High-pure and ultra-high-pure Mg, Al-based Mg alloys, Zn-based Mg alloys, Ca-based alloys and RE-based Mg alloys have been considered. In Section 4, the alloys’ performances with respect to the challenges is summarized providing the reader with useful information and suggestions on the potentially most suited choice. Finally, in Section 5, an outlook portraying the authors’ opinion of the future development of the field will be provided. This book will allow biomedical engineers, surface scientists, material scientists, implant manufacturers and companies working on implant approval an overview of the state-of-the-art technologies adopted so far to overcome the drawbacks of Mg for biomedical applications. Particular emphasis is put on explaining the link between mechanical, corrosion and biocompatible properties of Mg and its alloys as well as their pros and cons. In doing so, the authors intend to put the reader into the position to accurate discern the proper Mg-based material for his/her applications and to choose the proper improvement strategy to his/her cause.

Full Product Details

Author:   Mirco Peron ,  Filippo Berto ,  Jan Torgersen
Publisher:   Taylor & Francis Ltd
Imprint:   CRC Press
Weight:   0.417kg
ISBN:  

9780367429454


ISBN 10:   0367429454
Pages:   180
Publication Date:   07 April 2020
Audience:   Professional and scholarly ,  College/higher education ,  Professional & Vocational ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Contents List of Abbreviations ........................................................................................ ix Authors........................................................................................................... xiii Chapter 1 Introduction................................................................................... 1 1.1 Introduction ...........................................................................1 References.......................................................................................4 Chapter 2 Challenges and Common Strategies ............................................... 9 2.1 Introduction ...........................................................................9 2.2 Corrosion Mitigation Strategies..............................................9 2.2.1 Impurities Removal.................................................. 10 2.2.2 Alloying ................................................................... 11 2.2.3 Grain Size Modification........................................... 11 2.3 Mechanical Properties Tuning .............................................. 14 2.3.1 Grain Refinement .................................................... 15 2.3.2 Solid Solution Strengthening ................................... 16 2.3.3 Precipitation Hardening........................................... 16 2.4 Interplay among Mechanical Properties, Corrosion Resistance and Biocompatibility........................................... 17 References..................................................................................... 17 Chapter 3 Synopsis of Properties of Biocompatible Mg and Its Alloys......... 21 3.1 Introduction ......................................................................... 21 3.2 High-Pure Magnesium.......................................................... 21 3.2.1 High-Pure Magnesium: Mechanical Properties........ 21 3.2.2 High-Pure Magnesium: Corrosion Resistance.......... 23 3.2.3 High-Pure Magnesium: Biocompatibility................. 24 3.3 Aluminum-Based Alloys ....................................................... 26 3.3.1 AZ Alloys ................................................................ 28 3.3.1.1 AZ Alloys: Mechanical Properties ............. 28 3.3.1.2 AZ Alloys: Corrosion Resistance ............... 30 3.3.1.3 AZ Alloys: Biocompatibility ...................... 33 3.3.2 AM Alloys ............................................................... 33 3.3.2.1 AM Alloys: Mechanical Properties ............ 35 3.3.2.2 AM Alloys: Corrosion Resistance .............. 36 3.3.2.3 AM Alloys: Biocompatibility ..................... 39 3.3.3 Mg–Al–RE Alloys ................................................... 39 3.3.3.1 Mg–Al–RE Alloys: Mechanical Properties ................................................... 40 3.3.3.2 Mg–Al–RE Alloys: Corrosion Resistance .................................................. 42 3.3.3.3 Mg–Al–RE Alloys: Biocompatibility ......... 44 3.4 Mg–Zn Alloys....................................................................... 45 3.4.1 Mg–Zn Binary Alloys .............................................. 46 3.4.1.1 Mg–Zn Binary Alloys: Mechanical Properties ................................................... 47 3.4.1.2 Mg–Zn Binary Alloys: Corrosion Resistance .................................................. 47 3.4.1.3 Mg–Zn Binary Alloys: Biocompatibility .... 49 3.4.2 Mg–Zn–Zr Alloys .................................................... 53 3.4.2.1 Mg–Zn–Zr Alloys: Mechanical Properties ................................................... 53 3.4.2.2 Mg–Zn–Zr Alloys: Corrosion Resistance .................................................. 54 3.4.2.3 Mg–Zn–Zr Alloys: Biocompatibility .......... 59 3.4.3 Mg–Zn–Ca Alloys ................................................... 62 3.4.3.1 Mg–Zn–Ca Alloys: Mechanical Properties ................................................... 63 3.4.3.2 Mg–Zn–Ca Alloys: Corrosion Resistance .................................................. 66 3.4.3.3 Mg–Zn–Ca Alloys: Biocompatibility ......... 67 3.4.4 Mg–Zn–Ca BMGs................................................... 68 3.4.4.1 Mg–Zn–Ca BMGs: Mechanical Properties ................................................... 70 3.4.4.2 Mg–Zn–Ca BMGs: Corrosion Resistance.. 71 3.4.4.3 Mg–Zn–Ca BMGs: Biocompatibility......... 72 3.4.5 Mg–Zn–Mn Alloys .................................................. 73 3.4.5.1 Mg–Zn–Mn Alloys: Mechanical Properties ................................................... 75 3.4.5.2 Mg–Zn–Mn Alloys: Corrosion Resistance .................................................. 78 3.4.5.3 Mg–Zn–Mn Alloys: Biocompatibility ........ 82 3.4.6 Mg–Zn–RE Alloys................................................... 83 3.4.6.1 Mg–Zn–RE Alloys: Mechanical Properties ................................................... 86 3.4.6.2 Mg–Zn–RE Alloys: Corrosion Resistance .................................................. 88 3.4.6.3 Mg–Zn–RE Alloys: Biocompatibility......... 91 3.5 Mg–Ca Alloys....................................................................... 91 3.5.1 Mg–Ca Alloys: Mechanical Properties..................... 92 3.5.2 Mg–Ca Alloys: Corrosion Resistance ...................... 98 3.5.3 Mg–Ca Alloys: Biocompatibility............................ 101 3.6 Mg–RE Alloys.................................................................... 102 3.6.1 Mg–RE Alloys: Mechanical Properties .................. 106 3.6.2 Mg–RE Alloys: Corrosion Resistance.................... 108 3.6.3 Mg–RE Alloys: Biocompatibility........................... 112 References................................................................................... 116 Chapter 4 Tackling the Challenges ............................................................. 145 4.1 Introduction ....................................................................... 145 4.2 Radar Chart: An Easy Tool to Compare Corrosion, Mechanical and Biological Performances ........................... 145 Reference .................................................................................... 147 Chapter 5 Outlook...................................................................................... 149 Reference .................................................................................... 149 Appendix A: Corrosion ................................................................................... 151 Appendix B: In Vitro Biocompatibility Assessment ......................................... 161 Index.............................................................................................................. 165

Reviews

Author Information

Mirco Peron earned his degree in mechanical engineering (summa cum laude) in 2015 from the University of Padova, where his thesis evaluated the fatigue damage and stiffness evolution in composite laminates. He is currently a PhD student at Norwegian University of Science and Technology (NTNU), Trondheim. His PhD topic deals with the optimization of mechanical and corrosion properties of magnesium and its alloys for biomedical applications, with particular reference to the corrosion-assisted cracking phenomena. Filippo Berto is Chair of Structural Integrity at the Norwegian University of Science and Technology in Norway. He is in charge of the Mechanical and Material Characterization Lab in the Department of Mechanical and Industrial Engineering. He is author of more than 500 technical papers, mainly oriented to materials science engineering, the brittle failure of different materials, notch effect, the application of the finite element method to the structural analysis, the mechanical behavior of metallic materials, the fatigue performance of notched components as well as the reliability of welded, bolted and bonded joints. Since 2003, he has been working on different aspects of the structural integrity discipline, by mainly focusing attention on problems related to the static and fatigue assessment of engineering materials with particular attention to biomedical and medical applications and materials. Jan Torgersen is Professor of mechanical engineering at NTNU, Trondheim. He received his PhD from Vienna University of Technology, where he worked on high-resolution laser microfabrication of hydrogels for tissue engineering. He was pioneering in the work of processing hydrogel formulations at micron scale resolution in vivo, in the presence of living cells and whole organisms. He received a postdoctoral fellowship to work on a nanoscale vapor deposition technique called atomic layer deposition, allowing conformal coating of thermally fragile and nanostructured substrates with atomically thin layers of a wide range of materials. He contributed to the development of a selflimiting deposition process for high-k materials for Dynamic Random Access Memory (DRAM) applications. His current research interests are micro- and nanofabrication as well as surface functionalization, with particular focus on biomedical applications.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List