|
![]() |
|||
|
||||
OverviewThis book provides a snapshot of the state of current research at the interface between machine learning and healthcare with special emphasis on machine learning projects that are (or are close to) achieving improvement in patient outcomes. The book provides overviews on a range of technologies including detecting artefactual events in vital signs monitoring data; patient physiological monitoring; tracking infectious disease; predicting antibiotic resistance from genomic data; and managing chronic disease. With contributions from an international panel of leading researchers, this book will find a place on the bookshelves of academic and industrial researchers and advanced students working in healthcare technologies, biomedical engineering, and machine learning. Full Product DetailsAuthor: David A. Clifton (Associate Professor, University of Oxford, UK)Publisher: Institution of Engineering and Technology Imprint: Institution of Engineering and Technology ISBN: 9781849199780ISBN 10: 1849199787 Pages: 320 Publication Date: 28 October 2016 Audience: College/higher education , Professional and scholarly , Tertiary & Higher Education , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsChapter 1: Machine learning for healthcare technologies - an introduction Chapter 2: Detecting artifactual events in vital signs monitoring data Chapter 3: Signal processing and feature selection preprocessing for classification in noisy healthcare data Chapter 4: ECG model-based Bayesian filtering Chapter 5: The power of tensor decompositions in biomedical applications Chapter 6: Patient physiological monitoring with machine learning Chapter 7: A Bayesian model for fusing biomedical labels Chapter 8: Incorporating end-user preferences in predictive models Chapter 9: Variational Bayesian non-parametric inference for infectious disease models Chapter 10: Predicting antibiotic resistance from genomic data Chapter 11: Machine learning for chronic disease Chapter 12: Big data and optimisation of treatment strategies Chapter 13: Decision support systems for home monitoring applications: Classification of activities of daily living and epileptic seizuresReviewsAuthor InformationDavid Clifton is Associate Professor of Engineering Science at the University of Oxford, and a Research Fellow of the Royal Academy of Engineering. He leads the Computational Health Informatics Laboratory at the Institute of Biomedical Engineering in Oxford's Department of Engineering Science. Prof. Clifton's research focuses on the development of 'big data' machine learning for tracking the health of complex systems. He previously worked on the world's first FDA-approved multivariate patient monitoring system, and systems that are used to monitor 20,000 patients each month in the UK National Health Service. Tab Content 6Author Website:Countries AvailableAll regions |