Machine Learning: ECML-93: European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993. Proceedings

Author:   Pavel B. Brazdil
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   1993 ed.
Volume:   667
ISBN:  

9783540566021


Pages:   480
Publication Date:   23 March 1993
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $237.47 Quantity:  
Add to Cart

Share |

Machine Learning: ECML-93: European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993. Proceedings


Add your own review!

Overview

This volume contains the proceedings of the EurpoeanConference on Machine Learning (ECML-93), continuing thetradition of the five earlier EWSLs (European WorkingSessions on Learning). The aim of these conferences is toprovide a platform for presenting the latest results in thearea of machine learning. The ECML-93 programme included invited talks, selectedpapers, and the presentation of ongoing work in postersessions. The programme was completed by several workshopson specific topics. The volume contains papers relatedto all these activities. The first chapter of the proceedings contains two invitedpapers, one by Ross Quinlan and one by Stephen Muggleton oninductive logic programming. The second chapter contains 18scientific papers accepted for the main sessions of theconference. The third chapter contains 18 shorter positionpapers. The final chapter includes three overview papersrelated to the ECML-93 workshops.

Full Product Details

Author:   Pavel B. Brazdil
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   1993 ed.
Volume:   667
Dimensions:   Width: 15.60cm , Height: 2.50cm , Length: 23.40cm
Weight:   1.520kg
ISBN:  

9783540566021


ISBN 10:   3540566023
Pages:   480
Publication Date:   23 March 1993
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

FOIL: A midterm report.- Inductive logic programming: Derivations, successes and shortcomings.- Two methods for improving inductive logic programming systems.- Generalization under implication by using or-introduction.- On the proper definition of minimality in specialization and theory revision.- Predicate invention in inductive data engineering.- Subsumption and refinement in model inference.- Some lower bounds for the computational complexity of inductive logic programming.- Improving example-guided unfolding.- Bayes and pseudo-Bayes estimates of conditional probabilities and their reliability.- Induction of recursive Bayesian classifiers.- Decision tree pruning as a search in the state space.- Controlled redundancy in incremental rule learning.- Getting order independence in incremental learning.- Feature selection using rough sets theory.- Effective learning in dynamic environments by explicit context tracking.- COBBIT—A control procedure for COBWEB in the presence of concept drift.- Genetic algorithms for protein tertiary structure prediction.- SIA: A supervised inductive algorithm with genetic search for learning attributes based concepts.- SAMIA: A bottom-up learning method using a simulated annealing algorithm.- Predicate invention in ILP — an overview.- Functional inductive logic programming with queries to the user.- A note on refinement operators.- An iterative and bottom-up procedure for proving-by-example.- Learnability of constrained logic programs.- Complexity dimensions and learnability.- Can complexity theory benefit from Learning Theory?.- Learning domain theories using abstract background knowledge.- Discovering patterns in EEG-signals: Comparative study of a few methods.- Learning to control dynamic systems with automatic quantization.- Refinement of rule sets with JoJo.- Rule combination in inductive learning.- Using heuristics to speed up induction on continuous-valued attributes.- Integrating models of knowledge and Machine Learning.- Exploiting context when learning to classify.- IDDD: An inductive, domain dependent decision algorithm.- An application of machine learning in the domain of loan analysis.- Extraction of knowledge from data using constrained neural networks.- Integrated learning architectures.- An overview of evolutionary computation.- ML techniques and text analysis.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List