Machine Learning: An Algorithmic Perspective

Author:   Stephen Marsland (Massey University, Palmerston North, New Zealand)
Publisher:   Taylor & Francis Ltd
Volume:   v. 1
ISBN:  

9781420067187


Pages:   406
Publication Date:   01 April 2009
Replaced By:   9781466583283
Format:   Mixed media product
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Our Price $184.67 Quantity:  
Add to Cart

Share |

Machine Learning: An Algorithmic Perspective


Overview

Traditional books on machine learning can be divided into two groups -- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text. Theory Backed up by Practical Examples The book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve. Highlights a Range of Disciplines and Applications Drawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge.

Full Product Details

Author:   Stephen Marsland (Massey University, Palmerston North, New Zealand)
Publisher:   Taylor & Francis Ltd
Imprint:   Chapman & Hall/CRC
Volume:   v. 1
Dimensions:   Width: 15.60cm , Height: 2.30cm , Length: 23.50cm
Weight:   0.680kg
ISBN:  

9781420067187


ISBN 10:   1420067184
Pages:   406
Publication Date:   01 April 2009
Audience:   College/higher education ,  Undergraduate ,  Postgraduate, Research & Scholarly
Replaced By:   9781466583283
Format:   Mixed media product
Publisher's Status:   Out of Print
Availability:   In Print   Availability explained
Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock.

Table of Contents

Reviews

... liberally illustrated with many programming examples, using Python. It includes a basic primer on Python and has an accompanying website. It has excellent breadth, and is comprehensive in terms of the topics it covers, both in terms of methods and in terms of concepts and theory. ... I think the author has succeeded in his aim: the book provides an accessible introduction to machine learning. It would be excellent as a first exposure to the subject, and would put the various ideas in context ... This book also includes the first occurrence I have seen in print of a reference to a zettabyte of data (1021 bytes) - a reference to all the world's computers being estimated to contain almost a zettabyte by 2010. -David J. Hand, International Statistical Review (2010), 78 If you are interested in learning enough AI to understand the sort of new techniques being introduced into Web 2 applications, then this is a good place to start. ... it covers the subject matter of many an introductory course on AI and it has references to the source material and further reading but it is written in a fairly casual style. Overall it works and much of the mathematics is explained in ways that make it fairly clear what is going on ... . This is a suitable introduction to AI if you are studying the subject on your own and it would make a good course text for an introduction and overview of AI. -I-Programmer, November 2009


! liberally illustrated with many programming examples, using Python. It includes a basic primer on Python and has an accompanying website. It has excellent breadth, and is comprehensive in terms of the topics it covers, both in terms of methods and in terms of concepts and theory. ! I think the author has succeeded in his aim: the book provides an accessible introduction to machine learning. It would be excellent as a first exposure to the subject, and would put the various ideas in context ! This book also includes the first occurrence I have seen in print of a reference to a zettabyte of data (1021 bytes) -- a reference to all the world's computers being estimated to contain almost a zettabyte by 2010. --David J. Hand, International Statistical Review (2010), 78 If you are interested in learning enough AI to understand the sort of new techniques being introduced into Web 2 applications, then this is a good place to start. ! it covers the subject matter of many an introductory course on AI and it has references to the source material and further reading but it is written in a fairly casual style. Overall it works and much of the mathematics is explained in ways that make it fairly clear what is going on ! . This is a suitable introduction to AI if you are studying the subject on your own and it would make a good course text for an introduction and overview of AI. --I-Programmer, November 2009


! liberally illustrated with many programming examples, using Python. It includes a basic primer on Python and has an accompanying website. It has excellent breadth, and is comprehensive in terms of the topics it covers, both in terms of methods and in terms of concepts and theory. ! I think the author has succeeded in his aim: the book provides an accessible introduction to machine learning. It would be excellent as a first exposure to the subject, and would put the various ideas in context ! This book also includes the first occurrence I have seen in print of a reference to a zettabyte of data (1021 bytes) -- a reference to all the world's computers being estimated to contain almost a zettabyte by 2010. --David J. Hand, International Statistical Review (2010), 78 If you are interested in learning enough AI to understand the sort of new techniques being introduced into Web 2 applications, then this is a good place to start. ! it covers the subject matter of many an introductory course on AI and it has references to the source material and further reading but it is written in a fairly casual style. Overall it works and much of the mathematics is explained in ways that make it fairly clear what is going on ! . This is a suitable introduction to AI if you are studying the subject on your own and it would make a good course text for an introduction and overview of AI. --I-Programmer, November 2009


Author Information

Massey University, Palmerston North, New Zealand

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List