Machine Learning Algorithms in Depth

Author:   Vadim Smolyakov
Publisher:   Manning Publications
ISBN:  

9781633439214


Pages:   328
Publication Date:   12 August 2024
Format:   Hardback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $211.17 Quantity:  
Add to Cart

Share |

Machine Learning Algorithms in Depth


Add your own review!

Overview

Develop a mathematical intuition around machine learning algorithms to improve model performance and effectively troubleshoot complex ML problems. For intermediate machine learning practitioners familiar with linear algebra, probability, and basic calculus. Machine Learning Algorithms in Depth dives into the design and underlying principles of some of the most exciting machine learning (ML) algorithms in the world today. With a particular emphasis on probability-based algorithms, you will learn the fundamentals of Bayesian inference and deep learning. You will also explore the core data structures and algorithmic paradigms for machine learning. You will explore practical implementations of dozens of ML algorithms, including: Monte Carlo Stock Price Simulation Image Denoising using Mean-Field Variational Inference EM algorithm for Hidden Markov Models Imbalanced Learning, Active Learning and Ensemble Learning Bayesian Optimisation for Hyperparameter Tuning Dirichlet Process K-Means for Clustering Applications Stock Clusters based on Inverse Covariance Estimation Energy Minimisation using Simulated Annealing Image Search based on ResNet Convolutional Neural Network Anomaly Detection in Time-Series using Variational Autoencoders Each algorithm is fully explored with both math and practical implementations so you can see how they work and put into action. About the technology Fully understanding how machine learning algorithms function is essential for any serious ML engineer. This vital knowledge lets you modify algorithms to your specific needs, understand the trade-offs when picking an algorithm for a project, and better interpret and explain your results to your stakeholders. This unique guide will take you from relying on one-size-fits-all ML libraries to developing your own algorithms to solve your business needs.

Full Product Details

Author:   Vadim Smolyakov
Publisher:   Manning Publications
Imprint:   Manning Publications
Dimensions:   Width: 18.00cm , Height: 1.50cm , Length: 23.00cm
Weight:   0.607kg
ISBN:  

9781633439214


ISBN 10:   1633439216
Pages:   328
Publication Date:   12 August 2024
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Vadim Smolyakov is a data scientist in Enterprise & Security DI R&D team at Microsoft. He is a former PhD student in AI at MIT CSAIL with research interests in Bayesian inference and deep learning. Prior to joining Microsoft, Vadim developed machine learning solutions in the e-commerce space.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List