Local Quantum Physics: Fields, Particles, Algebras

Author:   Rudolf Haag
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   2nd. rev. and enlarged ed. 1996
ISBN:  

9783540614517


Pages:   392
Publication Date:   05 August 1996
Format:   Hardback
Availability:   Out of stock   Availability explained


Our Price $261.36 Quantity:  
Add to Cart

Share |

Local Quantum Physics: Fields, Particles, Algebras


Add your own review!

Overview

This book gives a comprehensive account of local quantum physics understood as the synthesis of quantum theory with the principle of locality. Centered on the algebraic approach, it describes both the physical concepts and the mathematical structures and their consequences. These include the emergence of the particle picture, general collision theory covering the cases of massless particles and infraparticles, the analysis of possible charge structures, and exchange sym metries including braid group statistics. Thermal states of an unbounded medium and local equilibrium are discussed in detail. The author takes care both to describe the ideas and to give a critical assessment of future perspectives. The new edition contains numerous improvements and a new chapter concerning formalism and interpretation of quantum theory.

Full Product Details

Author:   Rudolf Haag
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   2nd. rev. and enlarged ed. 1996
Weight:   0.730kg
ISBN:  

9783540614517


ISBN 10:   3540614516
Pages:   392
Publication Date:   05 August 1996
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Out of Print
Availability:   Out of stock   Availability explained

Table of Contents

I. Background.- 1. Quantum Mechanics.- Basic concepts, mathematical structure, physical interpretation..- 2. The Principle of Locality in Classical Physics and the Relativity Theories.- Faraday's vision. Fields..- 2.1 Special relativity. Poincare group. Lorentz group. Spinors. Conformal group..- 2.2 Maxwell theory..- 2.3 General relativity..- 3. Poincare Invariant Quantum Theory.- 3.1 Geometric symmetries in quantum physics. Projective representations and the covering group..- 3.2 Wigner's analysis of irreducible, unitary representations of the Poincare group. 3.3 Single particle states. Spin..- 3.4 Many particle states: Bose-Fermi alternative, Fock space, creation operators. Separation of CM-motion..- 4. Action Principle.- Lagrangean. Double role of physical quantities. Peierls' direct definition of Poisson brackets. Relation between local conservation laws and symmetries..- 5. Basic Quantum Field Theory.- 5.1 Canonical quantization..- 5.2 Fields and particles..- 5.3 Free fields..- 5.4 The Maxwell-Dirac system. Gauge invariance..- 5.5 Processes..- II. General Quantum Field Theory.- 1. Mathematical Considerations and General Postulates.- 1.1 The representation problem..- 1.2 Wightman axioms..- 2. Hierarchies of Functions.- 2.1 Wightman functions, reconstruction theorem, analyticity in x-space..- 2.2 Truncated functions, clustering. Generating functionals and linked cluster theorem..- 2.3 Time ordered functions..- 2.4 Covariant perturbation theory, Feynman diagrams. Renormalization..- 2.5 Vertex functions and structure analysis..- 2.6 Retarded functions and analyticity in p-space..- 2.7 Schwinger functions and Osterwalder-Schrader theorem..- 3. Physical Interpretation in Terms of Particles.- 3.1 The particle picture: Asymptotic particle configurations and collision theory..- 3.2 Asymptotic fields. S-matrix..- 3.3 LSZ-formalism..- 4. General Collision Theory.- 4.1 Polynomial algebras of fields. Almost local operators..- 4.2 Construction of asymptotic particle states..- 4.3. Coincidence arrangements of detectors..- 4.4 Generalized LSZ-formalism..- 5. Some Consequences of the Postulates.- 5.1 CPT-operator. Spin-statistics theorem. CPT-theorem..- 5.2 Analyticity of the S-matrix..- 5.3 Reeh-Schlieder theorem..- 5.4 Additivity of the energy-momentum-spectrum..- 5.5 Borchers classes..- III. Algebras of Local Observables and Fields.- 1. Review of the Perspective.- Characterization of the theory by a net of local algebras. Bounded operators. Unobservable fields, superselection rules and the net of abstract algebras of observables. Transcription of the basic postulates..- 2. Von Neumann Algebras. C*-Algebras. W*-Algebras.- 2.1 Algebras of bounded operators. Concrete C*-algebras and von Neumann algebras. Isomorphisms. Reduction. Factors. Classification of factors..- 2.2 Abstract algebras and their representations. Abstract C*-algebras. Relation between the C*-norm and the spectrum. Positive linear forms and states. The GNS-construction. Folia of states. Intertwiners. Primary states and cluster property. Purification. W*-algebras..- 3. The Net of Algebras of Local Observables.- 3.1 Smoothness and integration. Local definiteness and local normality..- 3.2 Symmetries and symmetry breaking. Vacuum states. The spectral ideals..- 3.3 Summary of the structure..- 4. The Vacuum Sector.- 4.1 The orthocomplemented lattice of causally complete regions..- 4.2 The net of von Neumann algebras in the vacuum representation..- IV. Charges, Global Gauge Groups and Exchange Symmetry.- 1. Charge Superselection Sectors.- Strange statistics . Charges. Selection criteria for relevant sectors. The program and survey of results..- 2. The DHR-Analysis.- 2.1 Localized morphisms..- 2.2 Intertwiners and exchange symmetry ( Statistics )..- 2.3 Charge conjugation, statistics parameter..- 2.4 Covariant sectors and energy-momentum spectrum..- 2.5 Fields and collision theory..- 3. The Buchholz-Fredenhagen-Analysis.- 3.1 Localized 1-particle states..- 3.2 BF-topological charges..- 3.3 Composition of sectors and exchange symmetry..- 3.4 Charge conjugation and the absence of infinite statistics ..- 4. Global Gauge Group and Charge Carrying Fields.- Implementation of endomorphisms. Charges with d = 1. Endomorphisms and non Abelian gauge group. DR categories and the embedding theorem..- 5. Low Dimensional Space-Time and Braid Group Statistics.- Statistics operator and braid group representations. The 2+1-dimensional case with BF-charges. Statistics parameter and Jones index..- V. Thermal States and Modular Automorphisms.- 1. Gibbs Ensembles, Thermodynamic Limit, KMS-Condition.- 1.1 Introduction..- 1.2 Equivalence of KMS-condition to Gibbs ensembles for finite volume..- 1.3 The arguments for Gibbs ensembles..- 1.4 The representation induced by a KMS-state..- 1.5 Phases, symmetry breaking and the decomposition of KMS-states..- 1.6 Variational principles and autocorrelation inequalities..- 2. Modular Automorphisms and Modular Conjugation.- 2.1 The Tomita-Takesaki theorem..- 2.2 Vector representatives of states. Convex cones in H..- 2.3 Relative modular operators and Radon-Nikodym derivatives..- 2.4 Classification of factors..- 3. Direct Characterization of Equilibrium States.- 3.1 Introduction..- 3.2 Stability..- 3.3 Passivity..- 3.4 Chemical potential..- 4. Modular Automorphisms of Local Algebras.- 4.1 The Bisognano-Wichmann theorem..- 4.2 Conformal invariance and the theorem of Hislop and Longo..- 5. Phase Space, Nuclearity, Split Property, Local Equilibrium.- 5.1 Introduction..- 5.2 Nuclearity and split property..- 5.3 Open subsystems..- 5.4 Modular nuclearity..- 6. The Universal Type of Local Algebras.- VI. Particles. Completeness of the Particle Picture.- 1. Detectors, Coincidence Arrangements, Cross Sections.- 1.1 Generalities..- 1.2 Asymptotic particle configurations. Buchholz's strategy..- 2. The Particle Content.- 2.1 Particles and infraparticles..- 2.2 Single particle weights and their decomposition..- 2.3 Remarks on the particle picture and its completeness..- 3. The Physical State Space of Quantum Electrodynamics.- VII. Principles and Lessons of Quantum Physics. A Review of Interpretations, Mathematical Formalism and Perspectives.- 1. The Copenhagen Spirit. Criticisms, Elaborations.- Niels Bohr's epistemological considerations. Realism. Physical systems and the division problem. Persistent non-classical correlations. Collective coordinates, decoherence and the classical approximation. Measurements. Correspondence and quantization. Time reflection asymmetry of statistical conclusions..- 2. The Mathematical Formalism.- Operational assumptions. Quantum Logic . Convex cones..- 3. The Evolutionary Picture.- Events, causal links and their attributes. Irreversibility. The EPR-effect. Ensembles vs. individuals. Decisions. Comparison with standard procedure..- VIII. Retrospective and Outlook.- 1. Algebraic Approach vs. Euclidean Quantum Field Theory.- 2. Supersymmetry.- 3. The Challenge from General Relativity.- 3.1 Introduction..- 3.2 Quantum field theory in curved space-time..- 3.3 Hawking temperature and Hawking radiation..- 3.4 A few remarks on quantum gravity..- Author Index and References.

Reviews

Indeed, both the expert in the field and the novice will enjoy Haags insightful exposition... This (superb) book is bound to occupy a place on a par with other classics in the mathematical physics literature. Physics Today ...enjoyable reading to anybody interested in the development of fundamental physical theories. Zentralblatt f. Mathematik


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List