|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Mariana Haragus , Gérard IoossPublisher: Springer London Ltd Imprint: Springer London Ltd Dimensions: Width: 15.50cm , Height: 1.80cm , Length: 23.50cm Weight: 1.070kg ISBN: 9780857291110ISBN 10: 0857291114 Pages: 329 Publication Date: 08 December 2010 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsElementary Bifurcations.- Center Manifolds.- Normal Forms.- Reversible Bifurcations.- Applications.- Appendix.ReviewsFrom the reviews: 'This book relies on versions of the center manifold theorem that apply to infinite-dimensional dynamical systems...Chapter 4 of the book is distinctive in its presentation of normal forms for bifurcations in 'reversible' systems. These are systems in which there is a symmetry that reverses the orientation of time. When this symmetry is a reflection, it leads to systems that have large families of periodic orbits because forward and backward trajectories that start on the subspace must meet if they return to this subspace. This is an intricate subject, and this book makes it much more accessible than ever before. As for much of Iooss' work throughout his career, this book gives many concrete examples of problems described by PDEs with an excellent balance between theory and applications of that theory' (SIAM Review, December 2011) This book relies on versions of the center manifold theorem that apply to infinite-dimensional dynamical systems. ! This is an intricate subject, and this book makes it much more accessible than ever before. As for much of Iooss' work throughout his career, this book gives many concrete examples of problems described by PDEs with an excellent balance between theory and applications of that theory. (John Guckenheimer, SIAM Review, Vol. 53 (4), 2011) 'This book relies on versions of the center manifold theorem that apply to infinite-dimensional dynamical systems...Chapter 4 of the book is distinctive in its presentation of normal forms for bifurcations in 'reversible' systems. These are systems in which there is a symmetry that reverses the orientation of time. When this symmetry is a reflection, it leads to systems that have large families of periodic orbits because forward and backward trajectories that start on the subspace must meet if they return to this subspace. This is an intricate subject, and this book makes it much more accessible than ever before. As for much of Iooss' work throughout his career, this book gives many concrete examples of problems described by PDEs with an excellent balance between theory and applications of that theory' (SIAM Review, December 2011) Author InformationTab Content 6Author Website:Countries AvailableAll regions |