Link Mining: Models, Algorithms, and Applications

Author:   Philip S. Yu ,  Jiawei Han ,  Christos Faloutsos
Publisher:   Springer-Verlag New York Inc.
Edition:   2010 ed.
ISBN:  

9781441965141


Pages:   586
Publication Date:   29 September 2010
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $551.76 Quantity:  
Add to Cart

Share |

Link Mining: Models, Algorithms, and Applications


Add your own review!

Overview

With the recent ?ourishing research activities on Web search and mining, social networkanalysis,informationnetworkanalysis,informationretrieval,linkana- sis,andstructuraldatamining,researchonlinkmininghasbeenrapidlygrowing, forminganew?eldofdatamining. Traditionaldataminingfocuseson""?at""or""isolated""datainwhicheachdata objectisrepresentedasanindependentattributevector. However,manyreal-world data sets are inter-connected, much richer in structure, involving objects of h- erogeneoustypesandcomplexlinks. Hence,thestudyoflinkminingwillhavea highimpactonvariousimportantapplicationssuchasWebandtextmining,social networkanalysis,collaborative?ltering,andbioinformatics. Asanemergingresearch?eld,therearecurrentlynobooksfocusingonthetheory andtechniquesaswellastherelatedapplicationsforlinkmining,especiallyfrom aninterdisciplinarypointofview. Ontheotherhand,duetothehighpopularity oflinkagedata,extensiveapplicationsrangingfromgovernmentalorganizationsto commercial businesses to people's daily life call for exploring the techniques of mininglinkagedata. Therefore,researchersandpractitionersneedacomprehensive booktosystematicallystudy,furtherdevelop,andapplythelinkminingtechniques totheseapplications. Thisbookcontainscontributedchaptersfromavarietyofprominentresearchers inthe?eld. Whilethechaptersarewrittenbydifferentresearchers,thetopicsand contentareorganizedinsuchawayastopresentthemostimportantmodels,al- rithms,andapplicationsonlinkmininginastructuredandconciseway. Giventhe lackofstructurallyorganizedinformationonthetopicoflinkmining,thebookwill provideinsightswhicharenoteasilyaccessibleotherwise. Wehopethatthebook willprovideausefulreferencetonotonlyresearchers,professors,andadvanced levelstudentsincomputersciencebutalsopractitionersinindustry. Wewouldliketoconveyourappreciationtoallauthorsfortheirvaluablec- tributions. WewouldalsoliketoacknowledgethatthisworkissupportedbyNSF throughgrantsIIS-0905215,IIS-0914934,andDBI-0960443. Chicago,Illinois PhilipS. Yu Urbana-Champaign,Illinois JiaweiHan Pittsburgh,Pennsylvania ChristosFaloutsos v Contents Part I Link-Based Clustering 1 Machine Learning Approaches to Link-Based Clustering...3 Zhongfei(Mark)Zhang,BoLong,ZhenGuo,TianbingXu, andPhilipS. Yu 2 Scalable Link-Based Similarity Computation and Clustering...45 XiaoxinYin,JiaweiHan,andPhilipS. Yu 3 Community Evolution and Change Point Detection in Time-Evolving Graphs...73 JimengSun,SpirosPapadimitriou,PhilipS. Yu,andChristosFaloutsos Part II Graph Mining and Community Analysis 4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks...107 GalileoMarkNamata,HossamSharara,andLiseGetoor 5 Markov Logic: A Language and Algorithms for Link Mining...135 PedroDomingos,DanielLowd,StanleyKok,AniruddhNath,Hoifung Poon,MatthewRichardson,andParagSingla 6 Understanding Group Structures and Properties in Social Media...163 LeiTangandHuanLiu 7 Time Sensitive Ranking with Application to Publication Search...187 XinLi,BingLiu,andPhilipS. Yu 8 Proximity Tracking on Dynamic Bipartite Graphs: Problem De?nitions and Fast Solutions...211 Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, andChristosFaloutsos vii viii Contents 9 Discriminative Frequent Pattern-Based Graph Classi?cation...237 HongCheng,XifengYan,andJiaweiHan Part III Link Analysis for Data Cleaning and Information Integration 10 Information Integration for Graph Databases...2 65 Ee-PengLim,AixinSun,AnwitamanDatta,andKuiyuChang 11 Veracity Analysis and Object Distinction...283 XiaoxinYin,JiaweiHan,andPhilipS. Yu Part IV Social Network Analysis 12 Dynamic Community Identi?cation...

Full Product Details

Author:   Philip S. Yu ,  Jiawei Han ,  Christos Faloutsos
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   2010 ed.
Dimensions:   Width: 15.50cm , Height: 3.30cm , Length: 23.50cm
Weight:   2.240kg
ISBN:  

9781441965141


ISBN 10:   1441965149
Pages:   586
Publication Date:   29 September 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Link-Based Clustering.- Machine Learning Approaches to Link-Based Clustering.- Scalable Link-Based Similarity Computation and Clustering.- Community Evolution and Change Point Detection in Time-Evolving Graphs.- Graph Mining and Community Analysis.- A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks.- Markov Logic: A Language and Algorithms for Link Mining.- Understanding Group Structures and Properties in Social Media.- Time Sensitive Ranking with Application to Publication Search.- Proximity Tracking on Dynamic Bipartite Graphs: Problem Definitions and Fast Solutions.- Discriminative Frequent Pattern-Based Graph Classification.- Link Analysis for Data Cleaning and Information Integration.- Information Integration for Graph Databases.- Veracity Analysis and Object Distinction.- Social Network Analysis.- Dynamic Community Identification.- Structure and Evolution of Online Social Networks.- Toward Identity Anonymization in Social Networks.- Summarization and OLAP of Information Networks.- Interactive Graph Summarization.- InfoNetOLAP: OLAP and Mining of Information Networks.- Integrating Clustering with Ranking in Heterogeneous Information Networks Analysis.- Mining Large Information Networks by Graph Summarization.- Analysis of Biological Information Networks.- Finding High-Order Correlations in High-Dimensional Biological Data.- Functional Influence-Based Approach to Identify Overlapping Modules in Biological Networks.- Gene Reachability Using Page Ranking on Gene Co-expression Networks.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List