|
![]() |
|||
|
||||
OverviewWith the recent ?ourishing research activities on Web search and mining, social networkanalysis,informationnetworkanalysis,informationretrieval,linkana- sis,andstructuraldatamining,researchonlinkmininghasbeenrapidlygrowing, forminganew?eldofdatamining. Traditionaldataminingfocuseson""?at""or""isolated""datainwhicheachdata objectisrepresentedasanindependentattributevector. However,manyreal-world data sets are inter-connected, much richer in structure, involving objects of h- erogeneoustypesandcomplexlinks. Hence,thestudyoflinkminingwillhavea highimpactonvariousimportantapplicationssuchasWebandtextmining,social networkanalysis,collaborative?ltering,andbioinformatics. Asanemergingresearch?eld,therearecurrentlynobooksfocusingonthetheory andtechniquesaswellastherelatedapplicationsforlinkmining,especiallyfrom aninterdisciplinarypointofview. Ontheotherhand,duetothehighpopularity oflinkagedata,extensiveapplicationsrangingfromgovernmentalorganizationsto commercial businesses to people's daily life call for exploring the techniques of mininglinkagedata. Therefore,researchersandpractitionersneedacomprehensive booktosystematicallystudy,furtherdevelop,andapplythelinkminingtechniques totheseapplications. Thisbookcontainscontributedchaptersfromavarietyofprominentresearchers inthe?eld. Whilethechaptersarewrittenbydifferentresearchers,thetopicsand contentareorganizedinsuchawayastopresentthemostimportantmodels,al- rithms,andapplicationsonlinkmininginastructuredandconciseway. Giventhe lackofstructurallyorganizedinformationonthetopicoflinkmining,thebookwill provideinsightswhicharenoteasilyaccessibleotherwise. Wehopethatthebook willprovideausefulreferencetonotonlyresearchers,professors,andadvanced levelstudentsincomputersciencebutalsopractitionersinindustry. Wewouldliketoconveyourappreciationtoallauthorsfortheirvaluablec- tributions. WewouldalsoliketoacknowledgethatthisworkissupportedbyNSF throughgrantsIIS-0905215,IIS-0914934,andDBI-0960443. Chicago,Illinois PhilipS. Yu Urbana-Champaign,Illinois JiaweiHan Pittsburgh,Pennsylvania ChristosFaloutsos v Contents Part I Link-Based Clustering 1 Machine Learning Approaches to Link-Based Clustering...3 Zhongfei(Mark)Zhang,BoLong,ZhenGuo,TianbingXu, andPhilipS. Yu 2 Scalable Link-Based Similarity Computation and Clustering...45 XiaoxinYin,JiaweiHan,andPhilipS. Yu 3 Community Evolution and Change Point Detection in Time-Evolving Graphs...73 JimengSun,SpirosPapadimitriou,PhilipS. Yu,andChristosFaloutsos Part II Graph Mining and Community Analysis 4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks...107 GalileoMarkNamata,HossamSharara,andLiseGetoor 5 Markov Logic: A Language and Algorithms for Link Mining...135 PedroDomingos,DanielLowd,StanleyKok,AniruddhNath,Hoifung Poon,MatthewRichardson,andParagSingla 6 Understanding Group Structures and Properties in Social Media...163 LeiTangandHuanLiu 7 Time Sensitive Ranking with Application to Publication Search...187 XinLi,BingLiu,andPhilipS. Yu 8 Proximity Tracking on Dynamic Bipartite Graphs: Problem De?nitions and Fast Solutions...211 Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, andChristosFaloutsos vii viii Contents 9 Discriminative Frequent Pattern-Based Graph Classi?cation...237 HongCheng,XifengYan,andJiaweiHan Part III Link Analysis for Data Cleaning and Information Integration 10 Information Integration for Graph Databases...2 65 Ee-PengLim,AixinSun,AnwitamanDatta,andKuiyuChang 11 Veracity Analysis and Object Distinction...283 XiaoxinYin,JiaweiHan,andPhilipS. Yu Part IV Social Network Analysis 12 Dynamic Community Identi?cation... Full Product DetailsAuthor: Philip S. Yu , Jiawei Han , Christos FaloutsosPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 2010 ed. Dimensions: Width: 15.50cm , Height: 3.10cm , Length: 23.50cm Weight: 0.908kg ISBN: 9781493901470ISBN 10: 1493901478 Pages: 586 Publication Date: 20 October 2014 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |