Lineare Algebra: Eine Einführung für Ingenieure und Naturwissenschaftler

Author:   Andreas Fischer ,  Winfried Schirotzek ,  Klaus Vetters
Publisher:   Springer Fachmedien Wiesbaden
Edition:   2003 ed.
ISBN:  

9783519003700


Pages:   229
Publication Date:   26 November 2003
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $100.29 Quantity:  
Add to Cart

Share |

Lineare Algebra: Eine Einführung für Ingenieure und Naturwissenschaftler


Add your own review!

Overview

Lineare Algebra spielt in der mathematischen Modellierung und Bearbeitung von Anwendungsproblemen eine entscheidende Rolle. Das von erfahrenen Hochschullehrern verfasste Buch gibt eine verstandliche und systematische Einfuhrung in dieses Gebiet. Es wendet sich an alle Studierende an Universitaten und Fachhochschulen, fur die Mathematik ein wichtiges Grundlagenfach ist.

Full Product Details

Author:   Andreas Fischer ,  Winfried Schirotzek ,  Klaus Vetters
Publisher:   Springer Fachmedien Wiesbaden
Imprint:   Vieweg+Teubner Verlag
Edition:   2003 ed.
Dimensions:   Width: 17.00cm , Height: 1.30cm , Length: 24.00cm
Weight:   0.408kg
ISBN:  

9783519003700


ISBN 10:   3519003708
Pages:   229
Publication Date:   26 November 2003
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.
Language:   German

Table of Contents

1 Motivation.- 1.1 Proportionalität.- 1.2 Die Ableitung.- 1.3 Linearisierung.- 1.4 Produktionsmodelle.- 1.5 Zusammenfassung.- 2 Vektoren, Matrizen und lineare Gleichungssysteme.- 2.1 Vektor und Matrix.- 2.2 Rechenregeln für Matrizen und Vektoren.- 2.3 Besondere Typen von Vektoren und Matrizen.- 2.4 Lösung linearer Gleichungssysteme.- 3 Vektorräume und affine Räume.- 3.1 Der Begriff des Vektorraumes.- 3.2 Untervektorraum, Summe, Quotientenraum.- 3.3 Lineare Unabhängigkeit, Basis, Dimension.- 3.4 Affine Räume.- 4 Lineare Abbildungen und Matrizen.- 4.1 Grundlegende Begriffe und Eigenschaften.- 4.2 Dualer Raum, duale Abbildung.- 4.3 Matrixdarstellung linearer Abbildungen.- 4.4 Der Rang einer Matrix.- 4.5 Invertierbare Matrizen.- 4.6 Lineare Gleichungssysteme.- 4.7 Koordinatentransformation.- 5 Die Determinante.- 5.1 Der Flächeninhalt eines Parallelogramms.- 5.2 Definition der Determinante.- 5.3 Regeln für den Umgang mit der Determinante.- 5.4 Der Laplacesche Entwicklungssatz.- 5.5 Die Determinante eines Endomorphismus.- 6 Euklidische und unitäre Vektorräume.- 6.1 Länge und Winkel im ?2.- 6.2 Das Standardskalarprodukt im ?n.- 6.3 Euklidische Vektorräume.- 6.4 Unitäre Vektorräume.- 6.5 Orthogonalität.- 6.6 Orthogonale und unitäre Endomorphismen.- 6.7 Ein Trennungssatz und das Farkas—Lemma.- 7 Eigenwerte und Eigenvektoren.- 7.1 Aufgabenstellung und Begriffe.- 7.2 Eigenschaften und Berechnung von Eigenwerten und Eigenvektoren.- 7.3 Ähnlichkeitstransformation.- 7.4 Hauptachsentransformation quadratischer Formen.- 7.5 Extremaleigenschaft der Eigenwerte.- 8 Geometrie in euklidischen Vektorräumen.- 8.1 Darstellung affiner Unterräume.- 8.2 Abstand und Lage affiner Unterräume.- 8.3 Volumen von Parallelotopen.- 8.4 Das Vektorprodukt.- 8.5 Spiegelungen undDrehungen.- Bezeichnungen.

Reviews

Author Information

Dr. Andreas Fischer, Universität Dortmund Prof. Dr. Winfried Schirotzek, TU Dresden Dr. Klaus Vetters, TU Dresden

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List