Linear Systems Theory: A Structural Decomposition Approach

Author:   Ben M. Chen ,  Zongli Lin ,  Yacov Shamash
Publisher:   Birkhauser Boston Inc
Edition:   2004 ed.
ISBN:  

9780817637798


Pages:   416
Publication Date:   27 August 2004
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $261.36 Quantity:  
Add to Cart

Share |

Linear Systems Theory: A Structural Decomposition Approach


Add your own review!

Overview

This text is the first comprehensive treatment of structural decompositions of various types of linear systems, including autonomous, unforced or unsensed, strictly proper, non-strictly proper, and descriptor or singular systems. Structural properties play an important role in the understanding of linear systems and also provide insight to facilitate the solution of control problems related to stabilization, disturbance decoupling, robust and optimal control. Applications can be extended to industrial process control, aircraft and ship control, process automation control, and many other types of engineering systems. The authors employ a unique structural decomposition approach to break down an overall system into various subsystems, each with distinct features. The simplicity of these subsystems and their interconnections lead to deep insight about the design of feedback control systems for desired closed-loop performance, stability, and robustness.

Full Product Details

Author:   Ben M. Chen ,  Zongli Lin ,  Yacov Shamash
Publisher:   Birkhauser Boston Inc
Imprint:   Birkhauser Boston Inc
Edition:   2004 ed.
Dimensions:   Width: 15.50cm , Height: 2.30cm , Length: 23.50cm
Weight:   0.811kg
ISBN:  

9780817637798


ISBN 10:   0817637796
Pages:   416
Publication Date:   27 August 2004
Audience:   General/trade ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Introduction and Preview.- 1.1 Motivation.- 1.2 Preview of Each Chapter.- 1.3 Notation.- 2 Mathematical Background.- 2.1 Introduction.- 2.2 Vector Spaces and Subspaces.- 2.3 Matrix Algebra and Properties.- 2.4 Norms.- 3 Review of Linear Systems Theory.- 3.1 Introduction.- 3.2 Dynamical Responses.- 3.3 System Stability.- 3.4 Controllability and Observability.- 3.5 System Invertibilities.- 3.6 Normal Rank, Finite Zeros and Infinite Zeros.- 3.7 Geometric Subspaces.- 3.8 Properties of State Feedback and Output Injection.- 3.9 Exercises.- 4 Decompositions of Unforced and/or Unsensed Systems.- 4.1 Introduction.- 4.2 Autonomous Systems.- 4.3 Unforced Systems.- 4.4 Unsensed Systems.- 4.5 Exercises.- 5 Decompositions of Proper Systems.- 5.1 Introduction.- 5.2 SISO Systems.- 5.3 Strictly Proper Systems.- 5.4 Nonstrictly Proper Systems.- 5.5 Proofs of Properties of Structural Decomposition.- 5.6 Kronecker and Smith Forms of the System Matrix.- 5.7 Discrete-time Systems.- 5.8 Exercises.- 6 Decompositions of Descriptor Systems.- 6.1 Introduction.- 6.2 SISO Descriptor Systems.- 6.3 MEMO Descriptor Systems.- 6.4 Proofs of Theorem 6.3.1 and Its Properties.- 6.5 Discrete-time Descriptor Systems.- 6.6 Exercises.- 7 Structural Mappings of Bilinear Transformations.- 7.1 Introduction.- 7.2 Mapping of Continuous- to Discrete-time Systems.- 7.3 Mapping of Discrete- to Continuous-time Systems.- 7.4 Proof of Theorem 7.2.1.- 7.5 Exercises.- 8 System Factorizations.- 8.1 Introduction.- 8.2 Strictly Proper Systems.- 8.3 Nonstrictly Proper Systems.- 8.4 Discrete-time Systems.- 8.5 Exercises.- 9 Structural Assignment via Sensor/Actuator Selection.- 9.1 Introduction.- 9.2 Simultaneous Finite and Infinite Zero Placement.- 9.3 Complete Structural Assignment.- 9.4 Exercises.- 10 Time-Scale and Eigenstructure Assignment via State Feedback.- 10.1 Introduction.- 10.2 Continuous-time Systems.- 10.3 Discrete-time Systems.- 10.4 Exercises.- 11 Disturbance Decoupling with Static Output Feedback.- 11.1 Introduction.- 11.2 Left Invertible Systems.- 11.3 General Multivariable Systems.- 11.4 Exercises.- 12 A Software Toolkit.- 12.1 Introduction.- 12.2 Descriptions of m-Functions.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List