Linear Operator Theory in Engineering and Science

Author:   Arch W. Naylor ,  George R. Sell
Publisher:   Springer-Verlag New York Inc.
Edition:   1st ed. 1982. 2nd printing 2000
Volume:   40
ISBN:  

9780387950013


Pages:   624
Publication Date:   23 February 2000
Format:   Paperback
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Our Price $261.36 Quantity:  
Add to Cart

Share |

Linear Operator Theory in Engineering and Science


Add your own review!

Overview

This book is a unique introduction to the theory of linear operators on Hilbert space. The authors' goal is to present the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented. First published in 1971, Linear Operator in Engineering and Sciences has since proved to be a popular and very useful textbook.

Full Product Details

Author:   Arch W. Naylor ,  George R. Sell
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   1st ed. 1982. 2nd printing 2000
Volume:   40
Dimensions:   Width: 15.50cm , Height: 3.20cm , Length: 23.50cm
Weight:   1.960kg
ISBN:  

9780387950013


ISBN 10:   038795001
Pages:   624
Publication Date:   23 February 2000
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Table of Contents

1 Introduction.- 1. Black Boxes.- 2. Structure of the Plane.- 3. Mathematical Modeling.- 4. The Axiomatic Method. The Process of Abstraction.- 5. Proofs of Theorems.- 2 Set-Theoretic Structure.- 1. Introduction.- 2. Basic Set Operations.- 3. Cartesian Products.- 4. Sets of Numbers.- 5. Equivalence Relations and Partitions.- 6. Functions.- 7. Inverses.- 8. Systems Types.- 3 Topological Structure.- 1. Introduction.- A Introduction to Metric Spaces.- 2. Metric Spaces: Definition.- 3. Examples of Metric Spaces.- 4. Subspaces and Product Spaces.- 5. Continuous Functions.- 6. Convergent Sequences.- 7. A Connection Between Continuity and Convergence.- B Some Deeper Metric Space Concepts.- 8. Local Neighborhoods.- 9. Open Sets.- 10. More on Open Sets.- 11. Examples of Homeomorphic Metric Spaces.- 12. Closed Sets and the Closure Operation.- 13. Completeness.- 14. Completion of Metric Spaces.- 15. Contraction Mapping.- 16. Total Boundedness and Approximations.- 17. Compactness.- 4 Algebraic Structure.- 1. Introduction.- A Introduction to Linear Spaces.- 2. Linear Spaces and Linear Subspaces.- 3. Linear Transformations.- 4. Inverse Transformations.- 5. Isomorphisms.- 6. Linear Independence and Dependence.- 7. Hamel Bases and Dimension.- 8. The Use of Matrices to Represent Linear Transformations.- 9. Equivalent Linear Transformations.- B Further Topics.- 10. Direct Sums and Sums.- 11. Projections.- 12. Linear Functionals and the Algebraic Conjugate of a Linear Space.- 13. Transpose of a Linear Transformation.- 5 Combined Topological and Algebraic Structure.- 1. Introduction.- A Banach Spaces.- 2. Definitions.- 3. Examples of Normal Linear Spaces.- 4. Sequences and Series.- 5. Linear Subspaces.- 6. Continuous Linear Transformations.- 7. Inverses and Continuous Inverses.- 8. Operator Topologies.- 9. Equivalence of Normed Linear Spaces.- 10. Finite-Dimensional Spaces.- 11. Normed Conjugate Space and Conjugate Operator.- B Hilbert Spaces.- 12. Inner Product and Hilbert Spaces.- 13.Examples.- 14. Orthogonality.- 15. Orthogonal Complements and the Projection Theorem.- 16. Orthogonal Projections.- 17. Orthogonal Sets and Bases: Generalized Fourier Series.- 18. Examples of Orthonormal Bases.- 19. Unitary Operators and Equivalent Inner Product Spaces.- 20. Sums and Direct Sums of Hilbert Spaces.- 21. Continuous Linear Functionals.- C Special Operators.- 22. The Adjoint Operator.- 23. Normal and Self-Adjoint Operators.- 24. Compact Operators.- 25. Foundations of Quantum Mechanics.- 6 Analysis of Linear Operators (Compact Case).- 1. Introduction.- A An Illustrative Example.- 2. Geometric Analysis of Operators.- 3. Geometric Analysis. The Eigenvalue-Eigenvector Problem.- >4. A Finite-Dimensional Problem.- B The Spectrum.- 5. The Spectrum of Linear Transformations.- 6. Examples of Spectra.- 7. Properties of the Spectrum.- C Spectral Analysis.- 8. Resolutions of the Identity.- 9. Weighted Sums of Projections.- 10. Spectral Properties of Compact, Normal, and Self-AdjointOperators.- 11. The Spectral Theorem.- 12. Functions of Operators (Operational Calculus).- 13. Applications of the Spectral Theorem.- 14. Nonnormal Operators.- 7 Analysis of Unbounded Operators.- 1. Introduction.- 2. Green’s Functions.- 3. Symmetric Operators.- 4. Examples of Symmetric Operators.- 5. Sturm-Liouville Operators.- 6. Gårding’s Inequality.- 7. Elliptic Partial Differential Operators.- 8. The Dirichlet Problem.- 9. The Heat Equation and Wave Equation.- 10. Self-Adjoint Operators.- 11. The Cayley Transform.- 12. Quantum Mechanics, Revisited.- 13. Heisenberg Uncertainty Principle.- 14. The Harmonic Oscillator.- Appendix A The Hölder, Schwartz, and Minkowski Inequalities.- Appendix B Cardinality.- Appendix C Zorn’s Lemma.- Appendix D Integration and Measure Theory.- 1. Introduction.- 2. The Riemann Integral.- 3. A Problem with the Riemann Integral.- 5. Null Sets.- 6. Convergence Almost Everywhere.- 7. The Lebesgue Integral.- 8. Limit Theorems.- 9. Miscellany.- 10. Other Definitions of the Integral.- 13. Differentiation.- 14. The Radon-Nikodym Theorem.- 15. Fubini Theorem.- Appendix E Probability Spaces and Stochastic Processes.- 1. Probability Spaces.- 2. Random Variables and Probability Distributions.- 3. Expectation.- 4. Stochastic Independence.- 5. Conditional Expectation Operator.- 6. Stochastic Processes.- Index of Symbols.

Reviews

A.W. Naylor and G.R. Sell <p>Linear Operator Theory in Engineering and Science <p> Vivid and easily understandable . . . numerous exercises . . . have greatly advanced the understanding of material presented in the book . . . can be used by students with various level of preparation with different interests, as well as a textbook for a senior-level courses. a ZENTRALBLATT MATH


A.W. Naylor and G.R. Sell Linear Operator Theory in Engineering and Science Vivid and easily understandable ... numerous exercises ... have greatly advanced the understanding of material presented in the book ... can be used by students with various level of preparation with different interests, as well as a textbook for a senior-level courses. -ZENTRALBLATT MATH


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List