Linear and Nonlinear Aspects of Vortices: The Ginzburg-andau Model

Author:   Frank Pacard ,  Tristan Riviere
Publisher:   Birkhauser Boston Inc
Edition:   2000 ed.
Volume:   39
ISBN:  

9780817641337


Pages:   342
Publication Date:   22 June 2000
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $340.56 Quantity:  
Add to Cart

Share |

Linear and Nonlinear Aspects of Vortices: The Ginzburg-andau Model


Add your own review!

Overview

Full Product Details

Author:   Frank Pacard ,  Tristan Riviere
Publisher:   Birkhauser Boston Inc
Imprint:   Birkhauser Boston Inc
Edition:   2000 ed.
Volume:   39
Dimensions:   Width: 15.50cm , Height: 2.00cm , Length: 23.50cm
Weight:   0.699kg
ISBN:  

9780817641337


ISBN 10:   0817641335
Pages:   342
Publication Date:   22 June 2000
Audience:   College/higher education ,  Professional and scholarly ,  General/trade ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1 Qualitative Aspects of Ginzburg-Landau Equations.- 1.1 The integrable case.- 1.2 The strongly repulsive case.- 1.3 The existence result.- 1.4 Uniqueness results.- 2 Elliptic Operators in Weighted Hölder Spaces.- 2.1 Function spaces.- 2.2 Mapping properties of the Laplacian.- 2.3 Applications to nonlinear problems.- 3 The Ginzburg-Landau Equation in ?.- 3.1 Radially symmetric solution on ?.- 3.2 The linearized operator about the radially symmetric solution.- 3.3 Asymptotic behavior of solutions of the homogeneous problem.- 3.4 Bounded solution of the homogeneous problem.- 3.5 More solutions to the homogeneous equation.- 3.6 Introduction of the scaling factor.- 4 Mapping Properties of L?.- 4.1 Consequences of the maximum principle in weighted spaces.- 4.2 Function spaces.- 4.3 A right inverse for L? in B1 \ {0}.- 5 Families of Approximate Solutions with Prescribed Zero Set.- 5.1 The approximate solution ?.- 5.2 A 3N dimensional family of approximate solutions.- 5.3 Estimates.- 5.4 Appendix.- 6 The Linearized Operator about the Approximate Solution ?.- 6.1 Definition.- 6.2 The interior problem.- 6.3 The exterior problem.- 6.4 Dirichlet to Neumann mappings.- 6.5 The linearized operator in all ?.- 6.6 Appendix.- 7 Existence of Ginzburg-Landau Vortices.- 7.1 Statement of the result.- 7.2 The linear mapping DM(0,0,0).- 7.3 Estimates of the nonlinear terms.- 7.4 The fixed point argument.- 7.5 Further information about the branch of solutions.- 8 Elliptic Operators in Weighted Sobolev Spaces.- 8.1 General overview.- 8.2 Estimates for the Laplacian.- 8.3 Estimates for some elliptic operator in divergence form.- 9 Generalized Pohozaev Formula for ?-Conformal Fields.- 9.1 The Pohozaev formula in the classical framework.- 9.2 Comparing Ginzburg-Landau solutions using pohozaev’s argument.- 9.3 ?-conformal vector fields.- 9.4 Conservation laws.- 9.5 Uniqueness results.- 9.6 Dealing with general nonlinearities.- 10 The Role of Zeros in the Uniqueness Question.- 10.1 The zero setof solutions of Ginzburg-Landau equations.- 10.2 A uniqueness result.- 11 Solving Uniqueness Questions.- 11.1 Statement of the uniqueness result.- 11.2 Proof of the uniqueness result.- 11.3 A conjecture of F. Bethuel, H. Brezis and F. Hélein.- 12 Towards Jaffe and Taubes Conjectures.- 12.1 Statement of the result.- 12.2 Gauge invariant Ginzburg-Landau critical points with one zero.- 12.3 Proof of Theorem 12.2.- References.- Index of Notation.

Reviews

In the course of their argument, the authors traverse a broad range of nontrivial analysis: elliptic equations on weighted Holder and Sobolev spaces, radially symmetric solutions, gluing techniques, Pokhozhaev-type arguments for solutions of semilinear elliptic equations, and more. Clearly aimed at a research audience, this book provides a fascinating and original account of the theory of Ginzburg-Landau vortices. --Mathematical Reviews


<p> In the course of their argument, the authors traverse a broad range of nontrivial analysis: elliptic equations on weighted Holder and Sobolev spaces, radially symmetric solutions, gluing techniques, Pokhozhaev-type arguments for solutions of semilinear elliptic equations, and more. Clearly aimed at a research audience, this book provides a fascinating and original account of the theory of Ginzburg-Landau vortices. <p>--Mathematical Reviews


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List