|
![]() |
|||
|
||||
OverviewThis book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, with the intention of offering an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis. The book is suitable for a course in a M.S. program in statistics, provided that the section of further results and technical notes in each of the first four chapters is skipped. If these four sections are included, the book may be used for a course in a Ph. D. program in statistics. A first course in mathematical statistics, the ability to use computer for data analysis and familiarity with calculus and linear algebra are prerequisites.; Additional statistical courses such as regression analysis and a good knowledge about matrices would be helpful. Full Product DetailsAuthor: Jiming JiangPublisher: Springer Imprint: Springer ISBN: 9786610865895ISBN 10: 6610865892 Pages: 269 Publication Date: 01 January 2007 Audience: General/trade , General Format: Electronic book text Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |