|
![]() |
|||
|
||||
OverviewDieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben. Full Product DetailsAuthor: Elis Strömgren , Bengt StrömgrenPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 1933 Dimensions: Width: 17.00cm , Height: 2.90cm , Length: 24.40cm Weight: 0.961kg ISBN: 9783642894640ISBN 10: 364289464 Pages: 556 Publication Date: 01 January 1933 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of Contents1. Die verschiedenen Zweige der Astronomie.- 2-10. UEber astronomische Instrumente im allgemeinen.- Das Fernrohr. Photographie. Winkelmessung. Uhren. Photometrie. Spektralapparate. Spektrum.- 11-15. Einige mathematische Hilfssatze.- Spharisch-trigonometrische Formeln.- 16. Der Sternhimmel.- Spharische Astronomie.- 17-23. Die tagliche Bewegung des Himmels. Spharische Koordinaten.- 24-36. Die astronomischen Messinstrumente.- Theodolit. Universalinstrument. Durchgangsinstrument. Meridiankreis und Vertikalkreis. AEquatoreal aufgestellte Instrumente. Refraktor und Reflektor. Historische Bemerkungen. Mikrometer.- 37-39. Die Refraktion.- 40-45. Die jahrliche Bewegung der Sonne.- Ekliptik. Beziehungen zwischen AEquatorial- und Ekliptikal-Koordinaten. Absolute Beobachtungen in alterer und neuerer Zeit. Sternkataloge.- 46-52. Die Einteilung der Zeit.- Das tropische Jahr. Sternzeit und Sonnenzeit. Kalender.- 53-66. Prazession. Nutation. Aberration. Jahrliche Parallaxe.- 67-71. Die scheinbare Bewegung des Mondes und der Planeten.- 72-78. Bestimmung der Zeit und der Rektaszension durch Beobachtung.- 79-82. Bestimmung der Polhoehe durch Beobachtung.- Polschwankungen. Bestimmung der geographischen Koordinaten zur See.- 83-84. Bestimmung des Azimuts durch Beobachtung.- Die astronomische Bewegungslehre und einige damit zusammenhangenden Probleme.- 85-89. Einleitende Bemerkungen.- Geschwindigkeit. Beschleunigung. Kraft. Tragheit. Masse. Dichte. Tangential- und Zentrifugalkraft. Zentralkrafte.- 90-97. Groesse und Gestalt der Erde.- Gradmessungen. Die Erde als Umdrehungsellipsoid.- 98-100. Die tagliche Parallaxe.- 101-108. Rotation der Erde.- 109-114. Weltsysteme.- Das Altertum. Das Copernicanische System.- 115-123. Die Keplerschen Gesetze.- Die Bahnen der Planeten im Raum. Bahnelemente.- 124-132. Das Gravitationsgesetz.- Elementare Betrachtungen uber das Zwei- und Dreikoerperproblem und das Stoerungsproblem.- 133-142. Die Bewegung des Mondes. Prazession und Nutation. Ebbe und Flut.- Elementare Betrachtungen.- 143-151. Finsternisse.- Sonnen- und Mondfinsternisse. Sternbedeckungen durch den Mond. Merkur- und Venusdurchgange.- 152-155. Die Entfernung der Erde von der Sonne.- AEltere und neuere Methoden zur Bestimmung der Sonnenparallaxe.- Mathematische Behandlung des Zweikoerperproblems, des Drei- und n-Koerperproblems und des Stoerungsproblems.- 156-179. Das Zweikoerperproblem.- Differentialgleichungen des Zweikoerperproblems und deren Integration. Relative Bewegung. Vergleich mit den Keplerschen Gesetzen. Bahnelemente. Reihenentwicklungen im Zweikoerperproblem. Bahnbestimmung. Die absoluten Bewegungen im Zweikoerperproblem.- 180-189. Das Dreikoerperproblem.- Differentialgleichungen und bekannte Integrale. Exakt loesbare Falle des Dreikoerperproblems. Das restringierte Problem (probleme restreint).- 190-203. Das Stoerungsproblem.- Verschiedene Stoerungsprobleme. Die Bewegungsgleichungen des Planetenproblems als Differentialgleichungen der rechtwinkligen Koordinaten. Stoerungsfunktion. Entwicklung der Stoerungsfunktion in eine unendliche Reihe. Umformung der Bewegungsgleichungen in Differentialgleichungen der Bahnelemente. Integration. Verschiedene Typen von Stoerungsgliedern: sakulare, langperiodische und normale periodische Glieder..- 204. Zur Definition der in der Himmelsmechanik benutzten Koordinatensysteme.- Inertialsysteme der Newtonschen Mechanik. Festlegung eines Inertialsystems durch Planetenbeobachtungen. Festlegung eines Inertialsystems durch Fixsternbeobachtungen. Bestimmung der Prazessionskonstante.- 205. Bewegungsformen innerhalb eines Sternsystems auf Grund der gesamten Anziehung des Systems.- Problemstellung. Einfaches Beispiel: Bewegungsformen in kugelsymmetrischen Sternhaufen.- Das Sonnensystem.- 206-211. Die Sonne.- Dimensionen. Masse. Dichte. Flecke. Fackeln. Rotation. Spektrum Korona. Protuberanzen. Chromosphare. Spektroheliograph. Stroemungsphanomene in der Sonnenatmosphare. Physikalische und chemische Verhaltnisse in den aussersten Schichten der Sonne. Das Innere der Sonne.- 212-235. Die Planeten und die Trabanten.- Allgemeines. Merkur. Venus. Erde und Mond. Mars. Die kleinen Planeten. Jupiter. Saturn. Die gegenseitigen Stoerungen der Planeten Jupiter und Saturn. Uranus. Neptun. Pluto. Umlaufs- und Rotationsrichtung im Planetensystem.- 236-243. Die Kometen.- Aussehen. Bahnen im Raume. Die vier Hauptgruppen unter den kurzperiodischen Kometen. Bahnbestimmung. Die ursprunglichen Bahnen der Kometen. Physische Verhaltnisse.- 244-246. Sternschnuppen und Feuerkugeln. Das Zodiakallicht.- Die Perioden in der Erscheinung der Sternschnuppen. Beziehungen der Sternschnuppen und Meteore zu Kometen. Das Zodiakallicht.- 247. Astronomische Konsequenzen der Relativitatstheorie.- 248. Bewegungsformen im Sonnensystem.- Stellarastronomie und Astrophysik.- 249-256. Helligkeit. Farbe. Durchmesser. Flachenhelligkeit.- Absolute und scheinbare Groesse. Die gegenseitigen Beziehungen der verschiedenen photometrischen Systeme. Farbenaquivalente. Interferometrische Durchmesserbestimmung. Flachenhelligkeit.- 257-262. Sternspektren.- Das kontinuierliche Spektrum. Effektive Temperatur. Farbtemperatur. Das Absorptionslinienspektrum. Spektraltypus. Spektraltypus und Farbe. Spektraltypus und absolute Helligkeit. Zweidimensionale Spektralklassifikation. Spektroskopische Parallaxenmethode.- 263-271. Die Eigenschaften der Sternatmospharen und die theoretische Deutung der Sternspektren.- Die Probleme der theoretischen Spektralanalyse. Die atomaren Mechanismen der Lichtemission und Lichtabsorption. UEbergangswahrscheinlichkeiten. Gleichgewichtszustande eines homogenen, unendlich ausgedehnten Gases (Ionisationstheorie). Sternatmospharen in lokalem thermodynamischem Gleichgewicht. Das kontinuierliche Spektrum. Die Absorptionslinien. Reine Absorption, Streuung und Fluoreszenz. Deutung des Zusammenhangs zwischen Spektraltypus und Temperatur und zwischen Spektraltypus und absoluter Helligkeit. Die relative Haufigkeit der Elemente.- 272-275. Das Russell-Diagramm. Der innere Aufbau der Sterne.- Die Beobachtungsdaten. Das Russell-Diagramm als Mittel zur Zuzammenfassung der Beobachtungsdaten. Die beobachtete Verteilung der Sterne im Russell-Diagramm. Der innere Aufbau der Sterne. Interpretation des Russell-Diagramms.- 276-280. Eigenbewegung. Radialgeschwindigkeit. Parallaxe. Raumgeschwindigkeit. Bewegung des Sonnensystems.- 281-298. Doppelsterne und mehrfache Systeme.- Visuelle Doppelsterne. Bahnbestimmung bei visuellen Doppelsternen. Bestimmung der Massen visueller Doppelsterne. Verteilung der visuellen Doppelsterne im Russell-Diagramm. Spektroskopische Doppelsterne. Bahnbestimmung und Massenbestimmung bei spektroskopischen Doppelsternen. Visuelle Doppelsterne, bei denen Radialgeschwindigkeitsanderungen beobachtet sind. Beobachtung spektroskopischer Doppelsterne mit dem Interferometer. Photometrische Doppelsterne. Bahnbestimmung bei photometrischen Doppelsternen. Bestimmung der Massen und Radien bei Doppelsternen, fur die photometrische und spektroskopische Elemente vorliegen. Die Rotation enger Doppelsterne. Die Verteilung spektroskopischer und photometrischer Doppelsterne im Russell-Diagramm. Mehrfache Systeme.- 299-301. Veranderliche und neue Sterne.- Entdeckungs- und Beobachtungsmethoden. Die verschiedenen Klassen veranderlicher Sterne. Cepheiden. Mirasterne. Theorien des Phanomens der Veranderlichkeit. Neue Sterne (Novae). Beschreibung des Novaphanomens. Theorien der Novae.- 302-304. Sternhaufen und Nebel.- Kugelfoermige Sternhaufen. Offene Sternhaufen. Sternstroeme. Diffuse Nebel und planetarische Nebel. Dunkelnebel. Anagalaktische Nebel.- 305-320. Das Universum.- Die Milchstrasse. AEltere Theorien. Sternzahlungen. Die nachsten Fixsterne. Parallaxenbestimmung mit Hilfe von Eigenbewegungen. Die Haufigkeitsfunktion der absoluten Helligkeiten. Photometrische Par-allaxen. Das Skelett des Milchstrassensystems. Statistische Untersuchungen mit Hilfe von Sternzahlungen. Absorption des Lichts im interstellaren Raum. Selektive Absorption. Die Struktur des Milchstrassensystems. Die Kalziumwolke im interstellaren Raum. Das System der anagalaktischen Nebel. Gesetzmassigkeiten in den Bewegungen der Sterne. Die Theorie der Rotation des Milchstrassensystems. Die Dynamik des Milchstrassensystems. Bewegungsverhaltnisse im metagalaktischen System.- 321. Kosmogonische Probleme.- Die Zeitskala. Theorie der Entwicklungsgeschichte der Sterne.- I. Formeln und Methoden.- Die Methode der kleinsten Quadrate. Fehlertheorie. Interpolation. Numerische Differentiation. Numerische Integration. Reduktion einer Mikrometerbeobachtung. Kleinere stellarastronomische Probleme (Eigenbewegung; Radialgeschwindigkeit; wirkliche Bewegung im Raum; lineare transversale Bewegung; jahrliche Parallaxe; das Hyadenproblem; parallaktische Bewegung; Anzahl der Sterne von verschiedenen Groessenklassen).- II. Rechenbeispiele.- Sonnenzeit und Sternzeit. Berechnung von Azimut und Hoehe. Bestimmung der Polhoehe mit Hilfe einer Hoehenbeobachtung. Auf- und Untergang eines Sterns. Reduktion einer Kometen-Beobachtung. Berechnung von Lange und Breite aus Rektaszension und Deklination. Berechnung des Radiusvektors und der wahren Anomalie eines Planeten. Beispiele zur Anwendung der Formeln fur Interpolation, numerische Differentiation und numerische Integration.- III. Mondstoerungen in Knoten und Bahnneigung.- Numerisches Beispiel zum Stoerungsproblem.- IV. Zur mathematischen Theorie der Prazession und Nutation.- V. Konstanten. Tabellen. Diagramme.- Mathematische und astronomische Konstanten und Tafeln (Tafeln fur: Prazession und Schiefe der Ekliptik; Unsicherheit in gemessenen Positionen; Grenzgroessen bei verschiedenen Beobachtungsmethoden; Extinktion des Lichts; Refraktion; Zeitverwandlung; Julianisches Datum; Ostertag im Gregorianischen Kalender; Fehlerintegral). Zwei Stereoskopbilder: unsere Nachbarsterne und Bahn des Kometen Pons-Winnecke. Zwei typische Sonnenfinsternis-Diagramme.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |