Lectures on Random Interfaces

Author:   Tadahisa Funaki
Publisher:   Springer Verlag, Singapore
Edition:   1st ed. 2016
ISBN:  

9789811008481


Pages:   138
Publication Date:   03 January 2017
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $145.17 Quantity:  
Add to Cart

Share |

Lectures on Random Interfaces


Add your own review!

Overview

Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book.Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers.Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamicsis studied from the points of view of the hydrodynamic limit and non-equilibrium fluctuation theory. Vershik curves are derived in that limit.A sharp interface limit for the Allen–Cahn equation, that is, a reaction–diffusion equation with bistable reaction term, leads to a mean curvature flow for the interfaces. Its stochastic perturbation, sometimes called a time-dependent Ginzburg–Landau model, stochastic quantization, or dynamic P(φ)-model, is considered. Brief introductions to Brownian motions, martingales, and stochastic integrals are given in an infinite dimensional setting. The regularity property of solutions of stochastic PDEs (SPDEs) of a parabolic type with additive noises is also discussed.The Kardar–Parisi–Zhang (KPZ) equation , which describes a growing interface with fluctuation, recently has attracted much attention. This is an ill-posed SPDE and requires a renormalization. Especially its invariant measures are studied.    

Full Product Details

Author:   Tadahisa Funaki
Publisher:   Springer Verlag, Singapore
Imprint:   Springer Verlag, Singapore
Edition:   1st ed. 2016
Weight:   2.685kg
ISBN:  

9789811008481


ISBN 10:   9811008485
Pages:   138
Publication Date:   03 January 2017
Audience:   College/higher education ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

The book at hand discusses various aspects of random interfaces, both in static and in dynamic settings, from various points of view. ... the book may serve as a good introductory text to several aspects of random interfaces. (Leonid Petrov, Mathematical Reviews, February, 2018)


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List