Learning in Graphical Models

Author:   M. Jordan
Publisher:   Springer
Edition:   1998 ed.
Volume:   89
ISBN:  

9780792350170


Pages:   630
Publication Date:   31 March 1998
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $947.76 Quantity:  
Add to Cart

Share |

Learning in Graphical Models


Add your own review!

Overview

Full Product Details

Author:   M. Jordan
Publisher:   Springer
Imprint:   Springer
Edition:   1998 ed.
Volume:   89
Dimensions:   Width: 15.50cm , Height: 3.80cm , Length: 23.50cm
Weight:   1.127kg
ISBN:  

9780792350170


ISBN 10:   0792350170
Pages:   630
Publication Date:   31 March 1998
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Preface; M.I. Jordan. Part I: Inference. Introduction to Inference for Bayesian Networks; R. Cowell. Advanced Inference in Bayesian Networks; R. Cowell. Inference in Bayesian Networks Using Nested Junction Trees; U. Kjærulff. Bucket Elimination: A Unifying Framework for Probabilistic Inference; R. Dechter. An Introduction to Variational Methods for Graphical Models; M.I. Jordan, et al. Improving the Mean Field Approximation via the Use of Mixture Distributions; T.S. Jaakkola, M.I. Jordan. Introduction to Monte Carlo Methods; D.J.C. MacKay. Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered Overrelaxation; R.M. Neal. Part II: Independence. Chain Graphs and Symmetric Associations; T.S. Richardson. The Multiinformation Function as a Tool for Measuring Stochastic Dependence; M. Studený, J. Vejnarová. Part III: Foundations for Learning. A Tutorial on Learning with Bayesian Networks; D. Heckerman. A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants; R.M. Neal, G.E. Hinton. Part IV: Learning from Data. Latent Variable Models; C.M. Bishop. Stochastic Algorithms for Exploratory Data Analysis: Data Clustering and Data Visualization; J.M. Buhmann. Learning Bayesian Networks with Local Structure; N. Friedman, M. Goldszmidt. Asymptotic Model Selection for Directed Networks with Hidden Variables; D. Geiger, et al. A Hierarchical Community of Experts; G.E. Hinton, et al. An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering; M.J. Kearns, et al. Learning Hybrid Bayesian Networks from Data; S. Monti, G.F. Cooper. A Mean Field Learning Algorithm for UnsupervisedNatural Networks; L. Saul, M.I. Jordan. Edge Exclusion Tests for Graphical Gaussian Models; P.W.F. Smith, J. Whittaker. Hepatitis B: A Case Study in MCMC; D.J. Spiegelhalter, et al. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond; C.K.I. Williams. Subject Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List