|
![]() |
|||
|
||||
OverviewR is a programming language developed is widely used for statistical and graphical analysis. It can execute advance machine learning algorithms including earning algorithm, linear regression, time series, statistical inference. R programming language is used by Fortune 500 companies and tech bellwethers like Uber, Google, Airbnb, Facebook, Apple. R provides a data scientist tools and libraries (Dplyr) to perform the 3 steps of analysis 1) Extract 2) Transform, Cleanse 3) Analyze. Table of Contents Chapter 1: What is R Programming Language? Introduction & Basics Chapter 2: How to Download & Install R, RStudio, Anaconda on Mac or Windows Chapter 3: R Data Types, Arithmetic & Logical Operators with Example Chapter 4: R Matrix Tutorial: Create, Print, add Column, Slice Chapter 5: Factor in R: Categorical & Continuous Variables Chapter 6: R Data Frame: Create, Append, Select, Subset Chapter 7: List in R: Create, Select Elements with Example Chapter 8: R Sort a Data Frame using Order() Chapter 9: R Dplyr Tutorial: Data Manipulation(Join) & Cleaning(Spread) Chapter 10: Merge Data Frames in R: Full and Partial Match Chapter 11: Functions in R Programming (with Example) Chapter 12: IF, ELSE, ELSE IF Statement in R Chapter 13: For Loop in R with Examples for List and Matrix Chapter 14: While Loop in R with Example Chapter 15: apply(), lapply(), sapply(), tapply() Function in R with Examples Chapter 16: Import Data into R: Read CSV, Excel, SPSS, Stata, SAS Files Chapter 17: How to Replace Missing Values(NA) in R: na.omit & na.rm Chapter 18: R Exporting Data to Excel, CSV, SAS, STATA, Text File Chapter 19: Correlation in R: Pearson & Spearman with Matrix Example Chapter 20: R Aggregate Function: Summarise & Group_by() Example Chapter 21: R Select(), Filter(), Arrange(), Pipeline with Example Chapter 22: Scatter Plot in R using ggplot2 (with Example) Chapter 23: How to make Boxplot in R (with EXAMPLE) Chapter 24: Bar Chart & Histogram in R (with Example) Chapter 25: T Test in R: One Sample and Paired (with Example) Chapter 26: R ANOVA Tutorial: One way & Two way (with Examples) Chapter 27: R Simple, Multiple Linear and Stepwise Regression [with Example] Chapter 28: Decision Tree in R with Example Chapter 29: R Random Forest Tutorial with Example Chapter 30: Generalized Linear Model (GLM) in R with Example Chapter 31: K-means Clustering in R with Example Chapter 32: R Vs Python: What's the Difference? Chapter 33: SAS vs R: What's the Difference? Full Product DetailsAuthor: Krishna RungtaPublisher: Independently Published Imprint: Independently Published Dimensions: Width: 21.60cm , Height: 2.10cm , Length: 28.00cm Weight: 0.912kg ISBN: 9781692035501ISBN 10: 1692035509 Pages: 394 Publication Date: 10 September 2019 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Temporarily unavailable ![]() The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |