Laser-Induced Damage of Optical Materials

Author:   Roger M. Wood
Publisher:   Taylor & Francis Ltd
ISBN:  

9780750308458


Pages:   241
Publication Date:   01 August 2003
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $378.00 Quantity:  
Add to Cart

Share |

Laser-Induced Damage of Optical Materials


Overview

The laser power handling capacities of optical systems are determined by the physical properties of their component materials. At low intensity levels these factors are not important, but an understanding of damage mechanisms is fundamental to good design of laser products operating at high power. Laser Induced Damage of Optical Materials presents a comprehensive overview of the damage processes that occur at high laser intensity levels and explains how these factors limit the energy handling capabilities of optical systems. The first two chapters of the book review basic EM theory, and consider optical effects, including absorption and scattering processes, that occur at low and medium energy levels. Chapter 3 describes the damage mechanisms that come into effect when intensity levels are raised. Chapter 4 discusses the central theory for the definition and measurement of the laser-induced damage thresholds of optical materials. This covers both thermal damage and dielectric breakdown as a function of absorption and laser pulse length and spot size. The following chapters are devoted to surfaces and sub-surface damage, coatings, measurement techniques, and special topics such as scaling and the importance of using the correct measurement unit systems. Laser Induced Damage of Optical Materials is an invaluable resource to those working with optical systems where high laser intensity is a factor.

Full Product Details

Author:   Roger M. Wood
Publisher:   Taylor & Francis Ltd
Imprint:   Institute of Physics Publishing
Dimensions:   Width: 15.60cm , Height: 1.90cm , Length: 23.40cm
Weight:   0.566kg
ISBN:  

9780750308458


ISBN 10:   0750308451
Pages:   241
Publication Date:   01 August 2003
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Glossary of Terms OPTICAL EFFECTS AT LOW POWER/ENERGY LEVELS Introduction Electromagnetic Theory Dispoersion Reflectance and Transmittance Reflectance and Absortance of a Conducting Surface Molecular Polarizability Absorption Scatter Analysis of R, T, A and S Measurements OPTICAL EFFECTS AT MEDIUM POWER/ENERGY LEVELS Introduction Absorption Raman Scattering Brillouin Scattering Harmonic Generation Self-Focusing DAMAGE THEORY Introduction Thermal Mechanisms Dielectric Processes Testing Regimes Time of Damage Damage Morphology SURFACES AND SUB-SURFACES Introduction Surfaces Sub-Surface COATINGS Introduction Coating Technology Measurements and Morphology of Coated Surfaces Coating Design Damage to Dielectric Coatings SPECIAL TOPICS Ambient Atmosphere/Gases Liquids Photodetectors Fibre Optics Scaling Laws Significance of the Units of Measurement MEASUREMENT TECHNIQUES Introduction Measurement of Power, Power Density, Energy, and Energy Density Laser-Induced Damage Threshold Measurement of Optical Characteristics Surface Measurement and Specification Other Measurements APPENDICES References Index

Reviews

The study of LIDT theory, mechanisms, measurement and amelioration has become a major research topic in the laser community. Laser-Induced Damage of Optical Materials will be an invaluable resource to users of industrial lasers as well as those involved in the design of optical systems where high-laser intensity is a factor. Graduate students will welcome this updated, compact, handy reference. -Optics & Photonics News, May 2005


Author Information

Wood, Roger M.

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List