|
![]() |
|||
|
||||
OverviewDoctoral Thesis / Dissertation from the year 2006 in the subject Electrotechnology, grade: 1, mit Ausgezeichnung bestanden, Vienna University of Technology (Insitut fur Photonik), language: English, abstract: In this PhD thesis different fundamental aspects and the practical usability of a laser ignition system as a new, innovative and alternative ignition approach for internal combustion engines were investigated in great detail mainly experimentally. Ignition experiments in combustion chambers under high pressures and elevated temperatures have been conducted. Different fuels were investigated. Also the minimum breakdown energy in dependence of the initial temperature and pressure with the help of an aspheric lens with a high numerical aperture was studied. High-speed Schlieren diagnostics have been conducted in the combustion chamber. The different stages like the ignition plasma within the first nanoseconds via the shock wave generation to the expanding flame kernel were investigated. With the help of multi-point ignition the combustion duration could be reduced significantly. The controlled start of auto-ignition of n-heptane-air mixtures by resonant absorption of Er, Cr: YSGG laser radiation at 2.78 m by additionally introduced water has been proven in combustion chamber experiments as a completely new idea. Beside experiments in the combustion chambers and long term tests under atmospheric conditions, various tests in SI engines up to 200 h, have been made. Different sources of contamination of the window surface have been identified. First experiments with a longitudinally diode-pumped, fiber-coupled and passively Q-switched solid-state laser -prototype system with maximum pulse energy of 1.5 mJ at about 1.5 ns pulse duration were performed which allowed to ignite the engine successfully over a test period of 100 h. In cooperation with Lund University in Sweden, experiments have been performed on another engine test bed running in HCCI mode revealing the las Full Product DetailsAuthor: Martin WeinrotterPublisher: Grin Publishing Imprint: Grin Publishing Dimensions: Width: 14.80cm , Height: 1.10cm , Length: 21.00cm Weight: 0.254kg ISBN: 9783640881543ISBN 10: 3640881540 Pages: 188 Publication Date: 01 April 2011 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |