|
![]() |
|||
|
||||
OverviewLine intensity mapping (LIM) is an observational technique that probes the large-scale structure of the Universe by collecting light from a wide field of the sky. This book demonstrates a novel analysis method for LIM using machine learning (ML) technologies. The author develops a conditional generative adversarial network that separates designated emission signals from sources at different epochs. It thus provides, for the first time, an efficient way to extract signals from LIM data with foreground noise. The method is complementary to conventional statistical methods such as cross-correlation analysis. When applied to three-dimensional LIM data with wavelength information, high reproducibility is achieved under realistic conditions. The book further investigates how the trained machine extracts the signals, and discusses the limitation of the ML methods. Lastly an application of the LIM data to a study of cosmic reionization is presented. This book benefits students and researchers who are interested in using machine learning to multi-dimensional data not only in astronomy but also in general applications. Full Product DetailsAuthor: Kana MoriwakiPublisher: Springer Verlag, Singapore Imprint: Springer Verlag, Singapore Edition: 1st ed. 2022 Weight: 0.371kg ISBN: 9789811958793ISBN 10: 9811958793 Pages: 120 Publication Date: 02 November 2022 Audience: College/higher education , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationKana Moriwaki is an assistant professor in the School of Science at the University of Tokyo. She received her Ph.D. from the University of Tokyo in 2022 and was awarded the University of Tokyo President's Grand Prize. Her interest lies in cosmological simulations and the application of machine learning techniques for astronomical data. Tab Content 6Author Website:Countries AvailableAll regions |