|
![]() |
|||
|
||||
OverviewWith the unprecedented growth-rate at which data is being collected and stored electronically today in almost all fields of human endeavor, the efficient extraction of useful information from the data available is becoming an increasing scientific challenge and a massive economic need. This book presents thoroughly reviewed and revised full versions of papers presented at a workshop on the topic held during KDD'99 in San Diego, California, USA in August 1999 complemented by several invited chapters and a detailed introductory survey in order to provide complete coverage of the relevant issues. The contributions presented cover all major tasks in data mining including parallel and distributed mining frameworks, associations, sequences, clustering, and classification. All in all, the volume presents the state of the art in the young and dynamic field of parallel and distributed data mining methods. It will be a valuable source of reference for researchers and professionals. Full Product DetailsAuthor: Mohammed J. Zaki , Ching-Tien HoPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2000 ed. Volume: 1759 Dimensions: Width: 15.50cm , Height: 1.40cm , Length: 23.30cm Weight: 0.860kg ISBN: 9783540671947ISBN 10: 3540671943 Pages: 260 Publication Date: 23 February 2000 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsLarge-Scale Parallel Data Mining.- Parallel and Distributed Data Mining: An Introduction.- Mining Frameworks.- The Integrated Delivery of Large-Scale Data Mining: The ACSys Data Mining Project.- A High Performance Implementation of the Data Space Transfer Protocol (DSTP).- Active Mining in a Distributed Setting.- Associations and Sequences.- Efficient Parallel Algorithms for Mining Associations.- Parallel Branch-and-Bound Graph Search for Correlated Association Rules.- Parallel Generalized Association Rule Mining on Large Scale PC Cluster.- Parallel Sequence Mining on Shared-Memory Machines.- Classification.- Parallel Predictor Generation.- Efficient Parallel Classification Using Dimensional Aggregates.- Learning Rules from Distributed Data.- Clustering.- Collective, Hierarchical Clustering from Distributed, Heterogeneous Data.- A Data-Clustering Algorithm on Distributed Memory Multiprocessors.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |