|
![]() |
|||
|
||||
OverviewKurt Gödel (1906-1978) was the most outstanding logician of the twentieth century, noted for Gödel's theorem, a hallmark of modern mathematics. The Collected Works will include both published and unpublished writings, in three or more volumes. The first two volumes will consist essentially of Gödel's published works (both in the original and translation), and the third volume will feature unpublished articles, lectures, and selections from his lecture courses, correspondence, and scientific notebooks. All volumes will contain extensive introductory notes to the work as a whole and to individual articles and other material, commenting upon their contents and placing them within a historical framework. This long-awaited project is of great significance to logicians, mathematicians, philosophers and historians. Full Product DetailsAuthor: Kurt Gödel , S. Feferman (Professor of Mathematics, Professor of Mathematics, Stanford University, USA) , John W. Dawson, Jr. (Professor of Mathematics, Professor of Mathematics, Pennsylvania State University, USA) , Stephen C. Kleene (Emeritus Professor of Mathematics and Computer Science, Emeritus Professor of Mathematics and Computer Science, University of Wisconsin, Canada)Publisher: Oxford University Press Inc Imprint: Oxford University Press Inc Dimensions: Width: 16.10cm , Height: 3.80cm , Length: 23.60cm Weight: 0.848kg ISBN: 9780195039641ISBN 10: 0195039645 Pages: 490 Publication Date: 22 May 1986 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: To order ![]() Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us. Table of ContentsGödel's life and workSolomon Feferman: A Gödel chronologyJohn W. Dawson, Jr.: Gödel 1929: Introductory note to 1929, 1930 and 1930aBurton Dreben and Jean van Heijenoort: Über die Vollständigkeit des Logikkalküls On the completeness of the calculus of logic Gödel 1930: (See introductory note under Gödel 1929.) Die Vollständigkeit der Axiome des logischen Funktionenkalküls The completeness of the axioms of the functional calculus of logic Gödel 1930a: (See introductory note under Gödel 1929.) Über die Vollständigkeit des Logikkalküls On the completeness of the calculus of logic Gödel 1930b: Introductory note to 1930b, 1931 and 1932bStephen C. Kleene: Einige metamathematische Resultate über Entscheidungs-definitheit und Widerspruchsfreiheit Some metamathematical results on completeness and consistency Gödel 1931: (See introductory note under Gödel 1930b.) Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme I On formally undecidable propositions of Principia mathematica and related systems I Gödel 1931a: Introductory note to 1931a, 1932e, f and gJohn W. Dawson, Jr.: Diskussion zur Grundlegung der Mathematik Discussion on providing a foundation for mathematics Gödel 1931b: Review of Neder 1931 Gödel 1931c: Introductory note to 1931cSolomon Feferman: Review of Hilbert 1931 Gödel 1931d: Review of Betsch 1926 Gödel 1931e: Review of Becker 1930 Gödel 1931f: Review of Hasse and Scholz 1928 Gödel 1931g: Review of von Juhos 1930 Gödel 1932: Introductory note to 1932A. S. Troelstra: Zum intuitionistischen aussagenkalkül On the intuitionistic propositional calculus Gödel 1932a: Introductory note to 1932a, 1933i and lWarren D. Goldfarb: Ein Spezialfall des Enscheidungsproblems der theoretischen Logik A special case of the decision problem for theoretical logic Gödel 1932b: (See introductory note under Gödel 1930b.) Über Vollständigkeit und Widerspruchsfreiheit On completeness and consistency Gödel 1932c: Introductory note to 1932cW. V. Quine: Eine Eigenschaft der Realisierungen des Aussagenkalküls A property of the realizations of the propositional calculus Gödel 1932d: Review of Skolem 1931 Gödel 1932e: (See introductory note under Gödel 1931a.) Review of Carnap 1931 Gödel 1932f: (See introductory note under Gödel 1931a.) Review of Heyting 1931 Gödel 1932g: (See introductory note under Gödel 1931a.) Review of von Neumann 1931 Gödel 1932h: Review of Klein 1931 Gödel 1932i: Review of Hoensbroech 1931 Gödel 1932j: Review of Klein 1932 Gödel 1932k: Introductory note to 1932k, 1934e and 1936bStephen C. Kleene: Review of Church 1932 Gödel 1932l: Review of Kalmár 1932 Gödel 1932m: Review of Huntington 1932 Gödel 1932n: Review of Skolem 1932 Gödel 1932o: Review of Dingler 1931 Gödel 1933: Introductory note to 1933W. V. Quine: [[Über die Parryschen Axiome]] [[On Parry's axioms]] Gödel 1933a: Introductory note to 1933aW. V. Quine: Über Unabhängigkeitsbeweise im Aussagenkalkül On independence proofs in the propositional calculus Gödel 1933b: Introductory note to 1933b, c, d, g and hJudson Webb: Über die metrische Einbettbarkeit der Quadrupel des R[3 in Kugelflächen On the isometric embeddability of quadruples of points of R[3 in the surface of a sphere Gödel 1933c: (See introductory note under Gödel 1933b.) Über die Waldsche Axiomatik des Zwichenbegriffes On Wald's axiomization of the notion of betweenness Gödel 1933d: (See introductory note under Gödel 1933b.) Zur Axiomatik der elementargeometrischen Verknüpfungs-relationen On the axiomatization of the relations of connection in elementary geometry Gödel 1933e: Introductory note to 1933eA. S. Troelstra: Zur institutionistischen Arithmetik und Zahlentheorie On intuitionistic arithmetic and number theory Gödel 1933f: Introductory note to 1933fA. S. Troelstra: Eine Interpretation des institutionistischen Aussagenkalküls An interpretation of the intuitionistic propositional calculus Gödel 1933g: (See introductory note under Gödel 1933b.) Bemerkung über projektive Abbildungen Remark concerning projective mappings Gödel 1933h: (See introductory note under Gödel 1933b.) Diskussion über koordinatenlose Differentialgeometrie Discussion concerning coordinate-free differential geometry Gödel 1933i: (See introductory note under Gödel 1932a.) Zum Enscheidungsproblem des logischen Funktionenkalküls On the decision probelm for the functional calculus of logic Gödel 1933j: Review of Kaczmarz 1932 Gödel 1933k: Review of Lewis 1932 Gödel 1933l: (See introductory note under Gödel 1932a.) Review of Kalmár 1933 Gödel 1933m: Review of Hahn 1932 Gödel 1934: Introductory note to 1934Stephen C. Kleene: On undecidable propositions of formal mathematical systems Gödel 1934a: Review of Skolem 1933 Gödel 1934b: Introductory note to 1934bW. V. Quine: Review of Quine 1933 Gödel 1934c: Introductory note to 1934c and 1935Robert L. Vaught: Review of Skolem 1933a Gödel 1934d: Review of Chen 1933 Gödel 1934e: (See introductory note under Gödel 1932k.) Review of Church 1933 Gödel 1934f: Review of Notcutt 1934 Gödel 1935: (See introductory note under Gödel 1934c.) Review of Skolem 1934 Gödel 1935a: Introductory note to 1935aW. V. Quine: Review of Huntington 1934 Gödel 1935b: Review of Carnap 1934 Gödel 1935c: Review of Kalmár 1934 Gödel 1936: Introductory note to 1936John W. Dawson, Jr.: Diskussionsbemerkung Discussion remark Gödel 1936a: Introductory note to 1936aRohit Parikh: Über die Länge von Beweisen On the length of proofs Gödel 1936b: (See introductory note under Gödel 1932k.) Review of Church 1935 Textual notes References IndexReviewsThis book is unique, and every philosopher or historian of logic will be determined to possess it. Nature This book is unique, and every philosopher or historian of logic will be determined to possess it. Nature Author InformationTab Content 6Author Website:Countries AvailableAll regions |