|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Pei-Kee LinPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 1st ed. 2004 Dimensions: Width: 15.50cm , Height: 2.00cm , Length: 23.50cm Weight: 0.593kg ISBN: 9781461264828ISBN 10: 1461264820 Pages: 370 Publication Date: 04 October 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1 Classical Theorems.- 1.1 Preliminaries.- 1.2 Basic Sequences.- 1.3 Banach Spaces Containing l1 or c0.- 1.4 James’s Theorem.- 1.5 Continuous Function Spaces.- 1.6 The Dunford-Pettis Property.- 1.7 The Pe?czynski Property (V*).- 1.8 Tensor Products of Banach Spaces.- 1.9 Conditional Expectation and Martingales.- 1.10 Notes and Remarks.- 1.11 References.- 2 Convexity and Smoothness.- 2.1 Strict Convexity and Uniform Convexity.- 2.2 Smoothness.- 2.3 Banach-Saks Property.- 2.4 Notes and Remarks.- 2.5 References.- 3 Köthe-Bochner Function Spaces.- 3.1 Köthe Function Spaces.- 3.2 Strongly and Scalarly Measurable Functions.- 3.3 Vector Measure.- 3.4 Some Basic Results.- 3.5 Dunford-Pettis Operators.- 3.6 The Radon-Nikodým Property.- 3.7 Notes and Remarks.- 3.8 References.- 4 Stability Properties I.- 4.1 Extreme Points and Smooth Points.- 4.2 Strongly Extreme and Denting Points.- 4.3 Strongly and w*-Strongly Exposed Points.- 4.4 Notes and Remarks.- 4.5 References.- 5 Stability Properties II.- 5.1 Copies of c0 in E(X).- 5.2 The Díaz-Kalton Theorem.- 5.3 Talagrand’s L1(X)-Theorem.- 5.4 Property (V*).- 5.5 The Talagrand Spaces.- 5.6 The Banach-Saks Property.- 5.7 Notes and Remarks.- 5.8 References.- 6 Continuous Function Spaces.- 6.1 Vector-Valued Continuous Functions.- 6.2 The Dieudonné Property in C(K, X).- 6.3 The Hereditary Dunford-Pettis Property.- 6.4 Projective Tensor Products.- 6.5 Notes and Remarks.- 6.6 References.ReviewsFrom the reviews: This book is a nice and useful reference for researchers in functional analysis who wish to have a quite comprehensive survey of geometric properties of Banach spaces of vector-valued functions. ---Mathematical Reviews This book ... gives in fact an exhaustive and very up-to-date account of several aspects of the general theory (isomorphic) and geometry of Banach spaces. This book is self-contained with an exhaustive list of references at the end of each chapter. Apart from well thought-out exercises at the end of each section, the 'Notes and Remarks' section at the end of each chapter contains several open questions with additional comments and references. This book is worth having on the shelves of anyone interested in Banach space theory. I thoroughly enjoyed going through it. (ZENTRALBLATT MATH) This book, though somewahte restrictively entitled, gives in fact an exhaustive and very up-to-date account of several aspects of the general theory (isomorphic) and geometry of Banach spaces... This book is self-contained with an exhaustive list of references at the end of each chapter. Apart from well thoght-out exervises at the end of each section,t he 'Notes and Remarks' section at the end of each chapter contains several open questions with additional somments and references. This book is worth having on the shelves of anyone interested in Banach space theory. I thoroughly enjoyed going through it. ---Zenteralblatt MATH Author InformationTab Content 6Author Website:Countries AvailableAll regions |